论文标题

在脆性断裂的相位模型中选择裂纹路径

Crack-path selection in phase-field models for brittle fracture

论文作者

Andrews, W. Beck, Pastewka, Lars

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This work presents a critical overview of the effects of different aspects of model formulation on crack path selection in quasi-static phase field fracture. We consider different evolution methods, mechanics formulations, fracture dissipation energy formulations, and forms of the irreversibility condition. The different model variants are implemented with common numerical methods based on staggered solution of the phase-field and mechanics sub-problems via FFT-based solvers. These methods mix standard approaches with novel elements, such as the use of bound-constrained conjugate gradients for the phase field sub-problem and a heuristic method for near-equilibrium evolution. We examine differences in crack paths between model variants in simple model systems and microstructures with randomly heterogeneous Young's modulus. Our results indicate that near-equilibrium evolution methods are preferable for quasi-static fracture of heterogeneous microstructures compared to minimization and time-dependent methods. In examining mechanics formulations, we find distinct effects of crack driving force and the model for contact implicit in phase field fracture. Our results favor the use of a strain-spectral decomposition for the crack driving force but not the contact model. Irreversibility condition and fracture dissipation energy formulation were also found to affect crack path selection, but systematic effects were difficult to deduce due to the overall sensitivity of crack selection within the heterogeneous microstructures. Our findings support the use of the AT1 model over the AT2 model and irreversibility of the phase field within a crack set rather than the entire domain. Sensitivity to these differences in formulation was reduced but not eliminated by reducing the crack width parameter $\ell$ relative to the size scale of the random microstructures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源