论文标题
可见波长时域光谱法的非对称双脉冲干涉频率分辨光门控
Asymmetric double-pulse interferometric frequency-resolved optical gating for visible-wavelength time-domain spectroscopy
论文作者
论文摘要
由于不断增强的时间分辨率和超快激光器的峰值功率,超快的科学和技术通过光的相互作用带来了光学计量学,强场物理学,非平衡物理等的机会。上的时间和光谱分辨率通过直接使用基于时间或频率 - 指示剂 - 基于频率的探针来报告光谱材料,超材料,超材料,超材料和等离激元材料等各种有趣材料(例如量子材料,超材料和等离激元材料)中的瞬态状态的超快动态研究,从而提出了泵探测光谱,该分辨率具有超快的时间和光谱,通过直接使用基于时间或频率 - 频率 - 频率的各种有趣的材料来提出了对瞬时状态的超快动力学研究。与其频域对应物形成鲜明对比的是,例如FTIR和椭圆法,时间域光谱副本不仅可以通过提供出色的光谱相灵敏度,而且还提供了由于其脉冲性质而提供的出色时间分辨率。为了将时间域光谱的检测范围扩展到具有挑战性的可见频率,我们提出了一个干涉率频率分辨的光门控(Frog)。我们的数值模拟显示,在经过精心设计的双脉冲方案中运行时,可以激活独特的相锁定机制,因此可以保留零和一阶相,这些相对于标准青蛙测量而言是无法访问的。其次是时间域信号重建和分析方案,我们表明具有亚周时间分辨率的时域光谱法可以实现在可见波长下在可见波长下进行复杂的介电函数测量的超兼容和无歧义方法的需求。
Ultrafast science and technology have brought in burgeoning opportunities to optical metrology, strong-field physics, non-equilibrium physics, etc., through light-matter interaction due to ever-advancing temporal resolution and peak power of ultrafast laser. The superior temporal and spectral resolution, has brought forth pump-probe spectroscopy for ultrafast dynamic study of transient states in various intriguing materials, such as quantum materials, metamaterials, and plasmonic materials, by directly reporting spectroscopic complex response function, using either time- or frequency-domain- based probes. In stark contrast to its frequency-domain counterparts, e.g., FTIR and ellipsometry, time-domain spectroscopy outstands by providing not only superb spectroscopic phase sensitivity but also exceptional temporal resolution due to its pulsed nature. To extend detection range of time-domain spectroscopy into the challenging visible frequencies, we propose an interferometry-type frequency-resolved optical gating (FROG). Our numerical simulation shows, when operating in a carefully engineered double-pulse scheme, a unique phase-locking mechanism can be activated, and therefore preserves both zero- and first-order phases, that are otherwise inaccessible to standard FROG measurement. Followed by time-domain signal reconstruction and analysis protocol, we show that time-domain spectroscopy with subcycle temporal resolution is enabled and well suits the need of ultrafast-compatible and ambiguity-free method for complex dielectric function measurement at visible wavelengths.