论文标题

在学习适应性采集策略中,用于采样不足的多线圈MRI重建

On learning adaptive acquisition policies for undersampled multi-coil MRI reconstruction

论文作者

Bakker, Tim, Muckley, Matthew, Romero-Soriano, Adriana, Drozdzal, Michal, Pineda, Luis

论文摘要

大多数当前采样采样多圈MRI重建的方法都集中在学习固定的等距采集轨迹的重建模型上。在本文中,我们研究了重建模型联合学习以及采集政策的问题。为此,我们通过可学习的获取策略扩展了端到端变分网络,可以适应不同的数据点。我们使用两个下采样因子验证了大规模下采样的大规模采样的多型线圈FastMRI数据集的模型:$ 4 \ times $和$ 8 \ times $。我们的实验表明,以$ 4 \ times $ $ $ 4 \ $ 2 \%的$ 8 \ times $加速,可学习的非自适应和手工制作的等距策略的表现表现为表现出色的表现,这表明潜在的适应性$ k $ k $ k $ -space获得的摄入率可以提高重新构造质量的较大的加速图像质量。但是,也许令人惊讶的是,我们表现最好的政策学会显式不自适应。

Most current approaches to undersampled multi-coil MRI reconstruction focus on learning the reconstruction model for a fixed, equidistant acquisition trajectory. In this paper, we study the problem of joint learning of the reconstruction model together with acquisition policies. To this end, we extend the End-to-End Variational Network with learnable acquisition policies that can adapt to different data points. We validate our model on a coil-compressed version of the large scale undersampled multi-coil fastMRI dataset using two undersampling factors: $4\times$ and $8\times$. Our experiments show on-par performance with the learnable non-adaptive and handcrafted equidistant strategies at $4\times$, and an observed improvement of more than $2\%$ in SSIM at $8\times$ acceleration, suggesting that potentially-adaptive $k$-space acquisition trajectories can improve reconstructed image quality for larger acceleration factors. However, and perhaps surprisingly, our best performing policies learn to be explicitly non-adaptive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源