论文标题

爆炸旋转巨星的P过程

The p-process in exploding rotating massive stars

论文作者

Choplin, A., Goriely, S., Hirschi, R., Tominaga, N., Meynet, G.

论文摘要

P过程中的核合成可以解释在太阳系中观察到的铁比铁重的质子富含质子的同位素,但是关于P过程的天体物理位点(S)的差异仍然持续存在和重要问题。我们研究了P过程如何在爆炸旋转的巨大恒星中运作,这些恒星通过旋转混合在生命中经历了S过程增强的核合成。我们计算了25 $ m _ {\ odot} $恒星模型的金属性$ z = 10^{ - 3} $,其初始旋转速度和不确定$^{17} $ O($α$,$γ$,$γ$)$^{21} $ ne ne ne ne ne ne ne ne ne反应的初始旋转速度和费率不同。核合成计算随后是737同位素的网络,耦合到恒星进化,并在最终的进化阶段和各种能量的球形爆炸过程中计算了P过程中的P过程。在我们的模型中,P-核素主要是在爆炸过程中合成的,但在最终的静水燃烧阶段并不多。 P过程的产量主要取决于最初的反铁种子数量,这又取决于初始旋转。我们发现,旋转对P过程的影响与旋转对S过程的影响相当。从毫无旋转到快速旋转,质量数量$ a <140 $的核素的S过程增加了$ 3-4 $ dex,p过程的产量也是如此。以较低的$^{17} $ O($α,γ$)的快速旋转速率可显着产生S-和P-核的$ A \ geq140 $。我们的结果表明,过去,更具体地说的是,核心 - 循环超新星从巨大的恒星对太阳(和银河)p-nuclei的贡献被低估了,更具体地说,具有亚阳光金属性的巨大恒星的贡献甚至可能占主导地位。一项更详细的研究,包括具有广泛质量和金属性的恒星模型,还有待执行的研究。

The p-process nucleosynthesis can explain proton-rich isotopes that are heavier than iron, which are observed in the Solar System, but discrepancies still persist and important questions concerning the astrophysical site(s) of the p-process remain unanswered. We investigate how the p-process operates in exploding rotating massive stars that have experienced an enhanced s-process nucleosynthesis during their life through rotational mixing. We computed 25 $M_{\odot}$ stellar models at a metallicity of $Z=10^{-3}$ with different initial rotation velocities and rates for the uncertain $^{17}$O($α$,$γ$)$^{21}$Ne reaction. The nucleosynthesis calculation, followed with a network of 737 isotopes, was coupled to stellar evolution, and the p-process nucleosynthesis was calculated in post-processing during both the final evolutionary stages and spherical explosions of various energies. In our models, the p-nuclides are mainly synthesized during the explosion, but not much during the ultimate hydrostatic burning stages. The p-process yields mostly depend on the initial number of trans-iron seeds, which in turn depend on the initial rotation. We found that the impact of rotation on the p-process is comparable to the impact of rotation on the s-process. From no to fast rotation, the s-process yields of nuclides with mass number $A<140$ increase by $3-4$ dex, and so do the p-process yields. Fast rotation with a lower $^{17}$O($α,γ$) rate significantly produces s- and p-nuclides with $A\geq140$. Our results suggest that the contribution of core-collapse supernovae from massive stars to the solar (and Galactic) p-nuclei has been underestimated in the past, and more specifically, that the contribution from massive stars with sub-solar metallicities may even dominate. A more detailed study including stellar models with a wide range of masses and metallicities remains to be performed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源