论文标题

结构化流行建模的代数框架

An Algebraic Framework for Structured Epidemic Modeling

论文作者

Libkind, Sophie, Baas, Andrew, Halter, Micah, Patterson, Evan, Fairbanks, James

论文摘要

大流行管理要求科学家迅速制定和分析流行病学模型,以预测疾病的传播和缓解策略的影响。科学家必须根据新的生物学数据和政策变化(例如社会疏远和疫苗接种)来修改现有模型并创建新颖的模型。传统的科学建模工作流程将模型的结构(其子模型及其相互作用)从软件中的实现中分离出来。因此,将局部变化纳入模型组件可能需要通过手动,耗时且容易出错的过程为代码库进行全局编辑。我们提出了一个组成建模框架,该框架使用高级代数结构来捕获特定领域的科学知识,并弥合科学家对模型的思考与实现它们的代码之间的差距。这些代数结构以应用类别理论为基础,简化和加快建模任务,例如模型规范,分层,分析和校准。凭借其明确的结构,鉴于利益相关者的反馈,模型也变得更加容易交流,批评和完善。

Pandemic management requires that scientists rapidly formulate and analyze epidemiological models in order to forecast the spread of disease and the effects of mitigation strategies. Scientists must modify existing models and create novel ones in light of new biological data and policy changes such as social distancing and vaccination. Traditional scientific modeling workflows detach the structure of a model -- its submodels and their interactions -- from its implementation in software. Consequently, incorporating local changes to model components may require global edits to the code-base through a manual, time-intensive, and error-prone process. We propose a compositional modeling framework that uses high-level algebraic structures to capture domain-specific scientific knowledge and bridge the gap between how scientists think about models and the code that implements them. These algebraic structures, grounded in applied category theory, simplify and expedite modeling tasks such as model specification, stratification, analysis, and calibration. With their structure made explicit, models also become easier to communicate, criticize, and refine in light of stakeholder feedback.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源