论文标题

基于内核的局部极限周期动力学识别线性定期变化模型

Kernel-Based Identification of Local Limit Cycle Dynamics with Linear Periodically Parameter-Varying Models

论文作者

Ozan, Defne E., Yin, Mingzhou, Iannelli, Andrea, Smith, Roy S.

论文摘要

极限周期振荡是在非线性动力系统中产生的现象,其特征是周期性,稳定和自我维持的状态轨迹。沿周期性轨迹在封闭环中控制的系统也可以建模为系统经历限制周期行为的系统。这项工作的目的是从数据中识别使用线性周期性参数变化模型围绕极限周期的局部动力学。使用坐标转换到横向表面,将动力学分解为两个部分:一个沿极限周期,一个在横向表面上。然后,使用基于内核的方法从轨迹数据中识别模型,并具有定期内核设计。基于内核的模型也扩展了,以说明与不同操作条件相关的系统参数的变化。在基准非线性系统和简化的机载风能模型上证明了所提出的识别方法的性能。与分析线性化和良好的预测能力相比,该方法提供了准确的模型参数估计。

Limit cycle oscillations are phenomena arising in nonlinear dynamical systems and characterized by periodic, locally-stable, and self-sustained state trajectories. Systems controlled in a closed loop along a periodic trajectory can also be modelled as systems experiencing limit cycle behavior. The goal of this work is to identify from data, the local dynamics around the limit cycle using linear periodically parameter-varying models. Using a coordinate transformation onto transversal surfaces, the dynamics are decomposed into two parts: one along the limit cycle, and one on the transversal surfaces. Then, the model is identified from trajectory data using kernel-based methods with a periodic kernel design. The kernel-based model is extended to also account for variations in system parameters associated with different operating conditions. The performance of the proposed identification method is demonstrated on a benchmark nonlinear system and on a simplified airborne wind energy model. The method provides accurate model parameter estimation, compared to the analytical linearization, and good prediction capability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源