论文标题
Pegg-net:在复杂场景中,像素的有效掌握生成
PEGG-Net: Pixel-Wise Efficient Grasp Generation in Complex Scenes
论文作者
论文摘要
基于视觉的GRASP估计是现实世界中机器人操纵任务的重要组成部分。现有的平面掌握估计算法已被证明在相对简单的场景中可以很好地工作。但是,当涉及到复杂的场景时,例如具有混乱的背景和移动对象的混乱场景时,先前作品的算法很容易产生不准确和不稳定的抓握接触点。在这项工作中,我们首先研究了现有的平面掌握估计算法,并分析了复杂场景中的相关挑战。其次,我们设计了一个像素高效的Grasp生成网络(PEGG-NET),以解决在复杂场景中抓住的问题。 Pegg-net可以在康奈尔数据集(98.9%)上获得提高的最先进性能,而在雅克德数据集(Jacquard Dataset)上的第二好的性能(93.8%)(93.8%)的表现优于其他现有算法,而无需引入复杂结构。第三,PEGG-NET可以使用基于位置的视觉伺服(PBV)在动态环境中以闭环方式运行。最后,我们在不同的复杂场景中对静态,动态和混乱的对象进行现实实验。结果表明,我们提出的网络在掌握不规则的对象,家用对象和车间工具方面取得了很高的成功率。为了使社区受益,我们训练有素的模型和补充材料可在https://github.com/hzwang96/pegg-net上找到。
Vision-based grasp estimation is an essential part of robotic manipulation tasks in the real world. Existing planar grasp estimation algorithms have been demonstrated to work well in relatively simple scenes. But when it comes to complex scenes, such as cluttered scenes with messy backgrounds and moving objects, the algorithms from previous works are prone to generate inaccurate and unstable grasping contact points. In this work, we first study the existing planar grasp estimation algorithms and analyze the related challenges in complex scenes. Secondly, we design a Pixel-wise Efficient Grasp Generation Network (PEGG-Net) to tackle the problem of grasping in complex scenes. PEGG-Net can achieve improved state-of-the-art performance on the Cornell dataset (98.9%) and second-best performance on the Jacquard dataset (93.8%), outperforming other existing algorithms without the introduction of complex structures. Thirdly, PEGG-Net could operate in a closed-loop manner for added robustness in dynamic environments using position-based visual servoing (PBVS). Finally, we conduct real-world experiments on static, dynamic, and cluttered objects in different complex scenes. The results show that our proposed network achieves a high success rate in grasping irregular objects, household objects, and workshop tools. To benefit the community, our trained model and supplementary materials are available at https://github.com/HZWang96/PEGG-Net.