论文标题
了解用于文本分类的图形卷积网络
Understanding Graph Convolutional Networks for Text Classification
论文作者
论文摘要
图形卷积网络(GCN)在具有丰富关系结构的任务上有效,并且可以保留数据嵌入中数据集的全局结构信息。最近,许多研究人员致力于研究GCN是否可以处理不同的自然语言处理任务,尤其是文本分类。虽然对文本分类应用GCN进行了充分研究,但其图形构造技术(例如节点/边缘选择及其功能表示形式)以及文本分类中的最佳GCN学习机制被忽略了。在本文中,我们全面分析了节点和边缘嵌入在图中的作用及其GCN学习技术在文本分类中的作用。我们的分析是同类产品中的第一个,并在不同文本分类基准的GCN培训/测试以及其半固定的环境下应用GCN培训/测试时提供了有用的见解。
Graph Convolutional Networks (GCN) have been effective at tasks that have rich relational structure and can preserve global structure information of a dataset in graph embeddings. Recently, many researchers focused on examining whether GCNs could handle different Natural Language Processing tasks, especially text classification. While applying GCNs to text classification is well-studied, its graph construction techniques, such as node/edge selection and their feature representation, and the optimal GCN learning mechanism in text classification is rather neglected. In this paper, we conduct a comprehensive analysis of the role of node and edge embeddings in a graph and its GCN learning techniques in text classification. Our analysis is the first of its kind and provides useful insights into the importance of each graph node/edge construction mechanism when applied at the GCN training/testing in different text classification benchmarks, as well as under its semi-supervised environment.