论文标题

部分可观测时空混沌系统的无模型预测

Design of a Biomimetic Tactile Sensor for Material Classification

论文作者

Dai, Kevin, Wang, Xinyu, Rojas, Allison M., Harber, Evan, Tian, Yu, Paiva, Nicholas, Gnehm, Joseph, Schindewolf, Evan, Choset, Howie, Webster-Wood, Victoria A., Li, Lu

论文摘要

触觉传感通常涉及对未知表面和物体的积极探索,使其在处理材料和纹理的特征方面特别有效。人类触觉感知提取的关键特性是表面粗糙度,它依赖于使用多层指尖结构测量振动信号。现有的机器人系统缺乏能够提供高动态传感范围,感知材料特性并保持低硬件成本的触觉传感器。在这项工作中,我们介绍了由仿生的皮肤结构组成的微型和低成本触觉传感器的参考设计和制造过程,包括人工指纹,真皮,表皮,表皮以及嵌入式磁铁传感器结构,作为将机械信息转换为数字信号的机械感应器。提出的传感器能​​够通过大厅效应检测高分辨率磁场数据,并为材料纹理分类创建高维时频域特征。此外,我们研究了通过模拟和物理实验对材料进行分类的不同表面传感器指纹模式的影响。提取时间序列和频域特征后,我们评估了K-Nearest邻居分类器,以区分不同的材料。我们实验的结果表明,与无脊无脊的传感器相比,带有指纹脊的仿生触觉传感器可以将精度高8%以上的材料分类。这些结果以及传感器的低成本和可定制性表现出很大的潜力,可以降低各种机器人应用的进入障碍,包括用于纹理分类,材料检查和对象识别的无模型触觉感应。

Tactile sensing typically involves active exploration of unknown surfaces and objects, making it especially effective at processing the characteristics of materials and textures. A key property extracted by human tactile perception is surface roughness, which relies on measuring vibratory signals using the multi-layered fingertip structure. Existing robotic systems lack tactile sensors that are able to provide high dynamic sensing ranges, perceive material properties, and maintain a low hardware cost. In this work, we introduce the reference design and fabrication procedure of a miniature and low-cost tactile sensor consisting of a biomimetic cutaneous structure, including the artificial fingerprint, dermis, epidermis, and an embedded magnet-sensor structure which serves as a mechanoreceptor for converting mechanical information to digital signals. The presented sensor is capable of detecting high-resolution magnetic field data through the Hall effect and creating high-dimensional time-frequency domain features for material texture classification. Additionally, we investigate the effects of different superficial sensor fingerprint patterns for classifying materials through both simulation and physical experimentation. After extracting time series and frequency domain features, we assess a k-nearest neighbors classifier for distinguishing between different materials. The results from our experiments show that our biomimetic tactile sensors with fingerprint ridges can classify materials with more than 8% higher accuracy and lower variability than ridge-less sensors. These results, along with the low cost and customizability of our sensor, demonstrate high potential for lowering the barrier to entry for a wide array of robotic applications, including model-less tactile sensing for texture classification, material inspection, and object recognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源