论文标题

部分可观测时空混沌系统的无模型预测

Resolvent estimates for one-dimensional Schrödinger operators with complex potentials

论文作者

Arnal, Antonio, Siegl, Petr

论文摘要

我们研究一维schrödinger运算符$ \ permatatorName {h} = - \ partial_x^2 + v $带有无界的复杂电位$ v $,并得出了分辨率标准的渐近估计,$ψ(λ):= \ | (\ operatorName {h}-λ)^{ - 1} \ | $,as $ |λ| \ to +\ infty $,单独考虑\ operatorname {ran} v $和$λ\ in \ mathbb {r} _ +$中的$λ\。在每种情况下,我们的分析都会产生一个确切的领先订单项和明确的剩余$ψ(λ)$,我们表明这些估计值是最佳的。我们还讨论了主要结果的几个扩展,它们与Semigroup理论的某些方面的相互关系,并用示例说明了它们。

We study one-dimensional Schrödinger operators $\operatorname{H} = -\partial_x^2 + V$ with unbounded complex potentials $V$ and derive asymptotic estimates for the norm of the resolvent, $Ψ(λ) := \| (\operatorname{H} - λ)^{-1} \|$, as $|λ| \to +\infty$, separately considering $λ\in \operatorname{Ran} V$ and $λ\in \mathbb{R}_+$. In each case, our analysis yields an exact leading order term and an explicit remainder for $Ψ(λ)$ and we show these estimates to be optimal. We also discuss several extensions of the main results, their interrelation with some aspects of semigroup theory and illustrate them with examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源