论文标题
浮点求和的精确意识确定性和概率误差范围
Precision-aware Deterministic and Probabilistic Error Bounds for Floating Point Summation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We analyze the forward error in the floating point summation of real numbers, for computations in low precision or extreme-scale problem dimensions that push the limits of the precision. We present a systematic recurrence for a martingale on a computational tree, which leads to explicit and interpretable bounds without asymptotic big-O terms. Two probability parameters strengthen the precision-awareness of our bounds: one parameter controls the first order terms in the summation error, while the second one is designed for controlling higher order terms in low precision or extreme-scale problem dimensions. Our systematic approach yields new deterministic and probabilistic error bounds for three classes of mono-precision algorithms: general summation, shifted general summation, and compensated (sequential) summation. Extension of our systematic error analysis to mixed-precision summation algorithms that allow any number of precisions yields the first probabilistic bounds for the mixed-precision FABsum algorithm. Numerical experiments illustrate that the probabilistic bounds are accurate, and that among the three classes of mono-precision algorithms, compensated summation is generally the most accurate. As for mixed precision algorithms, our recommendation is to minimize the magnitude of intermediate partial sums relative to the precision in which they are computed.