论文标题

DRACON-铰接式化身

DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance Fields for Articulated Avatars

论文作者

Raj, Amit, Iqbal, Umar, Nagano, Koki, Khamis, Sameh, Molchanov, Pavlo, Hays, James, Kautz, Jan

论文摘要

在虚拟触觉,游戏和人类建模上的应用中,获取和创建数字人类化身是一个重要的问题。大多数当代化的化身生成方法都可以视为基于3D的方法,它们使用多视图数据来学习具有外观(例如网格,隐式表面或体积)或基于2D的方法,或者学习化身的照片真实效果,但缺乏准确的3D表示。在这项工作中,我们介绍了Dracon,这是学习全身体积化头像的框架,它利用了2D和3D神经渲染技术的优势。它由一个可区分的栅格化模块Diffras组成,该模块综合了目标图像的低分辨率版本,并由参数体模型引导的其他潜在特征。然后将DIFFRA的输出用作条件的条件,以适应条件神经3D表示模块(C-NERF),该模块(C-NERF)使用体积渲染生成最终的高分子图像以及身体几何形状。尽管Diffras有助于获得光真逼真的图像质量,但使用签名的距离字段(SDF)进行3D表示,C-NERF有助于获得精细的3D几何细节。关于ZJU-MOCAP和HUMAN 36M数据集的实验表明,Dracon在错误指标和视觉质量方面的表现都优于最先进的方法。

Acquisition and creation of digital human avatars is an important problem with applications to virtual telepresence, gaming, and human modeling. Most contemporary approaches for avatar generation can be viewed either as 3D-based methods, which use multi-view data to learn a 3D representation with appearance (such as a mesh, implicit surface, or volume), or 2D-based methods which learn photo-realistic renderings of avatars but lack accurate 3D representations. In this work, we present, DRaCoN, a framework for learning full-body volumetric avatars which exploits the advantages of both the 2D and 3D neural rendering techniques. It consists of a Differentiable Rasterization module, DiffRas, that synthesizes a low-resolution version of the target image along with additional latent features guided by a parametric body model. The output of DiffRas is then used as conditioning to our conditional neural 3D representation module (c-NeRF) which generates the final high-res image along with body geometry using volumetric rendering. While DiffRas helps in obtaining photo-realistic image quality, c-NeRF, which employs signed distance fields (SDF) for 3D representations, helps to obtain fine 3D geometric details. Experiments on the challenging ZJU-MoCap and Human3.6M datasets indicate that DRaCoN outperforms state-of-the-art methods both in terms of error metrics and visual quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源