论文标题

重新访问基于社区的链接预测用于协作过滤

Revisiting Neighborhood-based Link Prediction for Collaborative Filtering

论文作者

Fu, Hao-Ming, Poirson, Patrick, Lee, Kwot Sin, Wang, Chen

论文摘要

协作过滤(CF)是推荐系统中最成功,最基本的技术之一。近年来,基于图形神经网络(GNN)的CF模型,例如NGCF [31],LightGCN [10]和GTN [9]取得了巨大的成功,并显着推进了最新的。虽然有丰富的文献使用高级模型来学习用户和项目表示,但项目建议本质上是用户和项目之间的链接预测问题。此外,尽管有早期的工作采用链接预测进行协作过滤[5,6],但这种趋势在很大程度上让位于侧重于汇总用户和项目节点的信息的工作,而不是直接对链接进行建模。在本文中,我们提出了一个新的链接(连接)分数,以概括多个标准链接预测方法。我们将这个新分数与用户 - 项目交互二分图中的迭代度更新过程相结合,以利用本地图结构而无需任何节点建模。结果是一个简单,非深度学习模型,只有六个可学习的参数。尽管它很简单,但我们证明了我们的方法在四种广泛使用的基准上的现有最新基于GNN的CF方法都大大优于现有的基于GNN的CF方法。特别是,在亚马逊书籍上,我们证明了召回和NDCG的60%以上。我们希望我们的工作能够邀请社区重新审视协作过滤的链接预测方面,在这种情况下,通过将链接预测与项目建议保持一致,可以实现巨大的性能提高。

Collaborative filtering (CF) is one of the most successful and fundamental techniques in recommendation systems. In recent years, Graph Neural Network (GNN)-based CF models, such as NGCF [31], LightGCN [10] and GTN [9] have achieved tremendous success and significantly advanced the state-of-the-art. While there is a rich literature of such works using advanced models for learning user and item representations separately, item recommendation is essentially a link prediction problem between users and items. Furthermore, while there have been early works employing link prediction for collaborative filtering [5, 6], this trend has largely given way to works focused on aggregating information from user and item nodes, rather than modeling links directly. In this paper, we propose a new linkage (connectivity) score for bipartite graphs, generalizing multiple standard link prediction methods. We combine this new score with an iterative degree update process in the user-item interaction bipartite graph to exploit local graph structures without any node modeling. The result is a simple, non-deep learning model with only six learnable parameters. Despite its simplicity, we demonstrate our approach significantly outperforms existing state-of-the-art GNN-based CF approaches on four widely used benchmarks. In particular, on Amazon-Book, we demonstrate an over 60% improvement for both Recall and NDCG. We hope our work would invite the community to revisit the link prediction aspect of collaborative filtering, where significant performance gains could be achieved through aligning link prediction with item recommendations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源