论文标题

浮雕系统中多体定位的稳定性

Stability of many-body localization in Floquet systems

论文作者

Sierant, Piotr, Lewenstein, Maciej, Scardicchio, Antonello, Zakrzewski, Jakub

论文摘要

我们使用多项式滤波的精确对角线化(Polfed)算法研究了无序浮雕系统中的多体定位(MBL)过渡。我们专注于无序的踢伊辛模型,并定量证明MBL过渡时的有限尺寸效应比在MBL背景下广泛研究的随机场XXZ旋转链中不那么严重。我们的结论还扩展到其他无序的浮雕模型,表明有限尺寸效应要比通常被认为是无序的自主旋转链中观察到的效果较小。我们观察到过渡到MBL相的一致签名,对于踢ising模型中的几种巨像破裂指标。此外,我们表明,在MBL过渡时相关长度的幂律差异的假设产生了关键的指数$ν\约2 $,这与1D无序系统的Harris标准一致。

We study many-body localization (MBL) transition in disordered Floquet systems using a polynomially filtered exact diagonalization (POLFED) algorithm. We focus on disordered kicked Ising model and quantitatively demonstrate that finite size effects at the MBL transition are less severe than in the random field XXZ spin chains widely studied in the context of MBL. Our conclusions extend also to other disordered Floquet models, indicating smaller finite size effects than those observed in the usually considered disordered autonomous spin chains. We observe consistent signatures of the transition to MBL phase for several indicators of ergodicity breaking in the kicked Ising model. Moreover, we show that an assumption of a power-law divergence of the correlation length at the MBL transition yields a critical exponent $ν\approx 2$, consistent with the Harris criterion for 1D disordered systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源