论文标题
随机双曲线表面的任意较小的光谱间隙,有许多尖端
Arbitrarily small spectral gaps for random hyperbolic surfaces with many cusps
论文作者
论文摘要
令$ \ mathcal {m} _ {g,n(g)} $是$ n(g)$ punctures属于Weil-petersson Metric的$ g $的双曲线表面的模量空间。在本文中,我们研究了cheeger常数的渐近行为和在$ \ Mathcal {m} _ {g,n(g)} $中的随机双曲线表面的光谱差距,当$ n(g)$比$ g $变慢$ g $ as $ g \ as $ g \ to \ nftty $时。
Let $\mathcal{M}_{g,n(g)}$ be the moduli space of hyperbolic surfaces of genus $g$ with $n(g)$ punctures endowed with the Weil-Petersson metric. In this paper we study the asymptotic behavior of the Cheeger constants and spectral gaps of random hyperbolic surfaces in $\mathcal{M}_{g,n(g)}$, when $n(g)$ grows slower than $g$ as $g\to \infty$.