论文标题

周期空间中稀疏姿势图优化

Sparse Pose Graph Optimization in Cycle Space

论文作者

Bai, Fang, Vidal-Calleja, Teresa, Grisetti, Giorgio

论文摘要

最先进的现代姿势图(PGO)系统是基于顶点的。在这种情况下,变量的数量可能很高,尽管图中的周期数(环闭合)相对较低。特别是对于稀疏问题,周期空间的尺寸明显小于顶点的数量。通过利用这一观察结果,在本文中,我们提出了一种直接利用周期空间的PGO的替代解决方案。我们将图的拓扑表征为一个循环矩阵,并使用相对姿势重新参数化问题,这些姿势进一步受图表的循环基础的约束。我们表明,通过使用最小循环基础,基于周期的方法在收敛速度和收敛到全球最小值方面具有相对于基于顶点的对应物具有优越的收敛性能。对于稀疏图,我们的基于周期的方法也比基于顶点的方法更高效。作为这项工作的附加贡献,我们提出了一种有效的算法来计算最低周期。尽管在计算机科学中闻名,但我们认为这种算法是机器人社区并不熟悉的。所有索赔都通过标准基准和模拟数据集的实验验证。为了促进结果的再现,我们为我们的方法提供了完整的开源C ++实现(代码:\ url {https://bitbucket.org/fangbai/cyclebasedpgo)。

The state-of-the-art modern pose-graph optimization (PGO) systems are vertex based. In this context the number of variables might be high, albeit the number of cycles in the graph (loop closures) is relatively low. For sparse problems particularly, the cycle space has a significantly smaller dimension than the number of vertices. By exploiting this observation, in this paper we propose an alternative solution to PGO, that directly exploits the cycle space. We characterize the topology of the graph as a cycle matrix, and re-parameterize the problem using relative poses, which are further constrained by a cycle basis of the graph. We show that by using a minimum cycle basis, the cycle-based approach has superior convergence properties against its vertex-based counterpart, in terms of convergence speed and convergence to the global minimum. For sparse graphs, our cycle-based approach is also more time efficient than the vertex-based. As an additional contribution of this work we present an effective algorithm to compute the minimum cycle basis. Albeit known in computer science, we believe that this algorithm is not familiar to the robotics community. All the claims are validated by experiments on both standard benchmarks and simulated datasets. To foster the reproduction of the results, we provide a complete open-source C++ implementation (Code: \url{https://bitbucket.org/FangBai/cycleBasedPGO) of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源