论文标题

在$ l^p $估计中,阳性riesz的转换与Schrödinger运营商有关

On $L^p$ estimates for positivity-preserving Riesz transforms related to Schrödinger operators

论文作者

Kucharski, Maciej, Wróbel, Błażej

论文摘要

我们研究$ l^{p},$ $ 1 \ leqslant p \ leqslant \ infty,$界面的riesz the y $ v^{a}( - \ frac {1} {2} {2} {2}Δ+v)我们证明,$ v^{a}( - \ frac {1} {2}δ+v)^{ - a} $在$ l^p(\ mathbb {r}^d)$上限制为$ 1 <p \ p \ leqslant 2 $,只要$ a \ leqslant 1/p。 $ l^{\ infty}(\ Mathbb {r}^d)$有限性如果$ V $满足$ a $ a $ a的积分条件,对小扰动具有抵抗力。在$ l^{1}(\ Mathbb {r}^d)上也获得了对$ V $的更强假设的类似结果。尤其是我们的$ l^{\ infty} $和$ l^1 $结果适用于非阴性潜力$ V $,这些$ V $在全球范围内具有电力增长或指定增长。我们还讨论了一个反例,表明$ l^{\ infty}(\ mathbb {r}^d)$有界可能会失败。

We study the $L^{p},$ $1\leqslant p\leqslant \infty,$ boundedness for Riesz transforms of the form $V^{a}(-\frac{1}{2}Δ+V)^{-a},$ where $a>0$ and $V$ is a non-negative potential. We prove that $V^{a}(-\frac{1}{2}Δ+V)^{-a}$ is bounded on $L^p(\mathbb{R}^d)$ with $1< p\leqslant 2$ whenever $a\leqslant 1/p.$ We demonstrate that the $L^{\infty}(\mathbb{R}^d)$ boundedness holds if $V$ satisfies an $a$-dependent integral condition that is resistant to small perturbations. Similar results with stronger assumptions on $V$ are also obtained on $L^{1}(\mathbb{R}^d).$ In particular our $L^{\infty}$ and $L^1$ results apply to non-negative potentials $V$ which globally have a power growth or an exponential growth. We also discuss a counterexample showing that the $L^{\infty}(\mathbb{R}^d)$ boundedness may fail.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源