论文标题

重型离子碰撞实验中初始几何形状的机器学习模型驱动的预测

Machine Learning model driven prediction of the initial geometry in Heavy-Ion Collision experiments

论文作者

Saha, Abhisek, Dan, Debasis, Sanyal, Soma

论文摘要

我们通过使用监督机器学习(ML)方法来确定重型离子碰撞(HIC)实验的初始几何形状的三个重要特性的高预测准确性。这些特性是影响参数,偏心率和参与者怪异性。尽管先前已经使用了ML技术来确定这些碰撞的影响参数,但我们研究了多种ML算法,它们的误差谱和采样方法,使用详尽的参数扫描和消融研究来确定有效算法和调谐训练集的组合,从而为所有三种不同的重型化模型提供了精确率的多倍改进。选择的三个模型是传输模型,流体动力模型和混合模型。使用三种不同的重离子碰撞模型的动机是表明,即使使用传输模型对模型进行训练,也为流体动力模型和混合模型提供了准确的结果。我们表明,影响参数预测的准确性取决于碰撞的中心性。随着ML培训方法的标准应用,中央碰撞的预测准确性相当低。我们的方法增加了多个倍数。我们还表明,通过将冲击参数(作为所有这些算法)包含作为特征,可以提高偏心率预测精度。我们讨论如何将误差最小化,并且在影响参数和偏心率预测的所有范围内都可以在很大程度上提高准确性。

We demonstrate high prediction accuracy of three important properties that determine the initial geometry of the heavy-ion collision (HIC) experiments by using supervised Machine Learning (ML) methods. These properties are the impact parameter, the eccentricity and the participant eccentricity. Though ML techniques have been used previously to determine the impact parameter of these collisions, we study multiple ML algorithms, their error spectrum, and sampling methods using exhaustive parameter scans and ablation studies to determine a combination of efficient algorithm and tuned training set that gives multi-fold improvement in accuracy for all three different heavy-ion collision models. The three models chosen are a transport model, a hydrodynamic model and a hybrid model. The motivation of using three different heavy-ion collision models was to show that even if the model is trained using a transport model, it gives accurate results for a hydrodynamic model as well as a hybrid model. We show that the accuracy of the impact parameter prediction depends on the centrality of the collision. With the standard application of ML training methods, prediction accuracy is considerable low for central collisions. Our method increases this accuracy by multiple folds. We also show that the eccentricity prediction accuracy can be improved by inclusion of the impact parameter as a feature in all these algorithms. We discuss how the errors can be minimized and the accuracy can be improved to a great extent in all the ranges of impact parameter and eccentricity predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源