论文标题

AutoComet:通过共同调节的增强型智能神经体系结构搜索

AutoCoMet: Smart Neural Architecture Search via Co-Regulated Shaping Reinforcement

论文作者

Das, Mayukh, Singh, Brijraj, Chheda, Harsh Kanti, Sharma, Pawan, NS, Pradeep

论文摘要

与快速不断发展的移动硬件和越来越复杂的目标场景一起设计合适的深层模型体系结构,适用于AI驱动的设备应用程序和功能,这是一项艰巨的任务。尽管神经体系结构搜索(NAS/AUTOML)通过将范式从大量的手动努力转移到自动化体系结构从数据中学习而变得更加容易,但是它具有重大限制,导致在移动设备的背景下导致关键的瓶颈,包括模型硬件延续性,较不稳定的搜索时间和偏离主要目标目标(S)。因此,我们提出了可以学习针对各种设备硬件和任务上下文优化的最合适的DNN体系结构的自动仪,〜3倍。我们的小说结合塑料加固控制器以及高保真硬件元软件行为预测变量产生了一个智能,快速的NAS框架,该框架通过广泛的形式主义来适应上下文,以实现任何类型的多标准优化。

Designing suitable deep model architectures, for AI-driven on-device apps and features, at par with rapidly evolving mobile hardware and increasingly complex target scenarios is a difficult task. Though Neural Architecture Search (NAS/AutoML) has made this easier by shifting paradigm from extensive manual effort to automated architecture learning from data, yet it has major limitations, leading to critical bottlenecks in the context of mobile devices, including model-hardware fidelity, prohibitive search times and deviation from primary target objective(s). Thus, we propose AutoCoMet that can learn the most suitable DNN architecture optimized for varied types of device hardware and task contexts, ~ 3x faster. Our novel co-regulated shaping reinforcement controller together with the high fidelity hardware meta-behavior predictor produces a smart, fast NAS framework that adapts to context via a generalized formalism for any kind of multi-criteria optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源