论文标题

物理知识的深度学习应用到实验流体力学

Physics-informed deep-learning applications to experimental fluid mechanics

论文作者

Eivazi, Hamidreza, Wang, Yuning, Vinuesa, Ricardo

论文摘要

由于在实验流体力学中的此类问题的流行,因此对低分辨率和嘈杂测量的流场数据进行了高分辨率重建,其中测量数据通常是稀疏,不完整和嘈杂的。深入学习方法已显示适合此类超分辨率任务。但是,需要大量的高分辨率示例,在许多情况下可能无法使用。此外,所获得的预测可能缺乏遵守物理原则,例如质量和动量保护。物理知识的深度学习提供了整合数据和物理定律的框架。在这项研究中,我们将物理知识的神经网络(PINN)应用于有限的嘈杂测量值的时间和空间中的超级分辨率,而没有任何高分辨率参考数据。我们的目标是获得问题的连续解决方案,在解决方案域中的任何时刻提供了一个身体上一致的预测。我们通过三种规范案例证明了PINN在时间和空间中的超级分辨率:汉堡方程,圆形圆柱后面的二维涡流和最小湍流流量。还通过添加合成高斯噪声来研究模型的鲁棒性。此外,我们显示了PINN的能力改善分辨率并减少由热线动物测量值组成的实际实验数据集中的噪声。我们的结果表明,在数据增强的背景下,针对流体力学的实验,PINN的功能足够。

High-resolution reconstruction of flow-field data from low-resolution and noisy measurements is of interest due to the prevalence of such problems in experimental fluid mechanics, where the measurement data are in general sparse, incomplete and noisy. Deep-learning approaches have been shown suitable for such super-resolution tasks. However, a high number of high-resolution examples is needed, which may not be available for many cases. Moreover, the obtained predictions may lack in complying with the physical principles, e.g. mass and momentum conservation. Physics-informed deep learning provides frameworks for integrating data and physical laws for learning. In this study, we apply physics-informed neural networks (PINNs) for super-resolution of flow-field data both in time and space from a limited set of noisy measurements without having any high-resolution reference data. Our objective is to obtain a continuous solution of the problem, providing a physically-consistent prediction at any point in the solution domain. We demonstrate the applicability of PINNs for the super-resolution of flow-field data in time and space through three canonical cases: Burgers' equation, two-dimensional vortex shedding behind a circular cylinder and the minimal turbulent channel flow. The robustness of the models is also investigated by adding synthetic Gaussian noise. Furthermore, we show the capabilities of PINNs to improve the resolution and reduce the noise in a real experimental dataset consisting of hot-wire-anemometry measurements. Our results show the adequate capabilities of PINNs in the context of data augmentation for experiments in fluid mechanics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源