论文标题
REIL:一个基于增强干预的模仿学习的框架
ReIL: A Framework for Reinforced Intervention-based Imitation Learning
论文作者
论文摘要
与传统的模仿学习方法(例如匕首和DART)相比,基于干预的模仿为用户提供了更方便,更有效的数据收集过程。在本文中,我们引入了基于加强干预的学习(REIL),该框架由基于一般干预的学习算法和旨在使非专家用户在很少的监督或微调的真实环境中训练代理商的多任务模仿学习模型。 Reil通过一种结合了模仿学习和强化学习的优势以及能够同时处理演示,过去的经验和当前观察的模型来实现这一目标。现实世界移动机器人导航挑战的实验结果表明,REIL从稀疏的主管校正中迅速学习,而不会在绩效中遭受恶化,这是基于HG Dagger和IWR等基于学习的方法的特征。结果还表明,与其他基于干预的方法(例如IARL和EGPO)相比,REIL可以使用任意奖励功能来训练而无需任何其他启发式方法。
Compared to traditional imitation learning methods such as DAgger and DART, intervention-based imitation offers a more convenient and sample efficient data collection process to users. In this paper, we introduce Reinforced Intervention-based Learning (ReIL), a framework consisting of a general intervention-based learning algorithm and a multi-task imitation learning model aimed at enabling non-expert users to train agents in real environments with little supervision or fine tuning. ReIL achieves this with an algorithm that combines the advantages of imitation learning and reinforcement learning and a model capable of concurrently processing demonstrations, past experience, and current observations. Experimental results from real world mobile robot navigation challenges indicate that ReIL learns rapidly from sparse supervisor corrections without suffering deterioration in performance that is characteristic of supervised learning-based methods such as HG-Dagger and IWR. The results also demonstrate that in contrast to other intervention-based methods such as IARL and EGPO, ReIL can utilize an arbitrary reward function for training without any additional heuristics.