论文标题
活性弹性固体的变分方法和深丽兹方法
Variational methods and deep Ritz method for active elastic solids
论文作者
论文摘要
变异方法已被广泛用于软物质物理学,以解决静态和动态问题。这些方法主要基于两个变异原理:最低自由能的变异原理(MFEVP)和Onsager的变分原理(OVP)。我们的兴趣在于这些变分方法在主动物理物理学上的应用。在我们以前的作品[Soft Matter,2021,17,3634]中,我们探索了基于OVP的变异方法在主动物质动力学建模中的应用。在目前的工作中,我们探讨了基于MFEVP的变异(或能量)方法,用于主动弹性固体中的静态问题。我们表明,MFEVP不仅可以用于得出平衡方程,还可以用于开发用于主动固体静态的近似解决方案方法,例如RITZ方法。此外,如果我们使用深度学习方法来构建变异问题的试验解决方案,则可以使用深度学习方法进一步增强丽兹式方法的力量。然后,我们应用这些变异方法和深丽兹方法来研究由内部不对称的活动收缩诱导的薄圆形圆形板的自发弯曲和收缩。发现圆形板弯曲到其收缩方面。对这种简单玩具系统的研究赋予了理解固体样融合细胞单层的形态发生的意义。此外,我们引入了所谓的activogravity长度,以表征重力相对于内部活性收缩在驱动活性板的弯曲方面的重要性。当侧板尺寸大于攻击性长度(约100微米)时,引力就变得很重要。多细胞尺度上的这种重力行为可能在组织发育过程中形态发生和上向对称性中起着重要作用。
Variational methods have been widely used in soft matter physics for both static and dynamic problems. These methods are mostly based on two variational principles: the variational principle of minimum free energy (MFEVP) and Onsager's variational principle (OVP). Our interests lie in the applications of these variational methods to active matter physics. In our former work [Soft Matter, 2021, 17, 3634], we have explored the applications of OVP-based variational methods for the modeling of active matter dynamics. In the present work, we explore variational (or energy) methods that are based on MFEVP for static problems in active elastic solids. We show that MFEVP can be used not only to derive equilibrium equations, but also to develop approximate solution methods, such as Ritz method, for active solid statics. Moreover, the power of Ritz-type method can be further enhanced using deep learning methods if we use deep neural networks to construct the trial solutions of the variational problems. We then apply these variational methods and the deep Ritz method to study the spontaneous bending and contraction of a thin active circular plate that is induced by internal asymmetric active contraction. The circular plate is found to be bent towards its contracting side. The study of such a simple toy system gives implications for understanding the morphogenesis of solid-like confluent cell monolayers. In addition, we introduce a so-called activogravity length to characterize the importance of gravitational forces relative to internal active contraction in driving the bending of the active plate. When the lateral plate dimension is larger than the activogravity length (about 100 micron), gravitational forces become important. Such gravitaxis behaviors at multicellular scales may play significant roles in the morphogenesis and in the up-down symmetry broken during tissue development.