论文标题

使用异性平面图像的自我监督光场深度估计

Self-Supervised Light Field Depth Estimation Using Epipolar Plane Images

论文作者

Li, Kunyuan, Zhang, Jun, Gao, Jun, Qi, Meibin

论文摘要

利用光场数据使得获得密集,准确的深度图成为可能。但是,差异范围有限的合成场景不能包含真实场景的多样性。通过培训合成数据,当前基于学习的方法在实际场景中表现不佳。在本文中,我们为光场深度估计提出了一个自我监督的学习框架。与使用每个像素的差异标签的现有端到端训练方法不同,我们的方法通过估算重新聚焦后的EPI差异转移来实现网络训练,从而扩展了Epillar线的差异范围。为了降低EPI对噪声的敏感性,我们提出了一种称为Epi-stack的新输入模式,该模式将EPIS堆叠在视图维度中。与传统输入模式相比,此方法对噪声场景不太敏感,并提高了估计的效率。与其他最先进的方法相比,所提出的方法还可以在实际情况下获得更高质量的结果,尤其是在复杂的遮挡和深度不连续性中。

Exploiting light field data makes it possible to obtain dense and accurate depth map. However, synthetic scenes with limited disparity range cannot contain the diversity of real scenes. By training in synthetic data, current learning-based methods do not perform well in real scenes. In this paper, we propose a self-supervised learning framework for light field depth estimation. Different from the existing end-to-end training methods using disparity label per pixel, our approach implements network training by estimating EPI disparity shift after refocusing, which extends the disparity range of epipolar lines. To reduce the sensitivity of EPI to noise, we propose a new input mode called EPI-Stack, which stacks EPIs in the view dimension. This method is less sensitive to noise scenes than traditional input mode and improves the efficiency of estimation. Compared with other state-of-the-art methods, the proposed method can also obtain higher quality results in real-world scenarios, especially in the complex occlusion and depth discontinuity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源