论文标题
量子遗传算法与多个寄存器中的个体
Quantum Genetic Algorithm with Individuals in Multiple Registers
论文作者
论文摘要
遗传算法是受到达尔文进化启发的启发式优化技术,其特征是成功找到可用于优化问题的强大解决方案。在这里,我们提出了一种基于子例程的量子遗传算法,该算法是在独立登记册中编纂的个体。这种独特的编纂使我们的建议可以描述所有表征遗传算法的基本要素,即基于人群的搜索,选择许多个体,交叉和突变。我们基于子例程的建筑使我们可以考虑该算法的几种变体。例如,我们首先分析了两台不同量子克隆机的性能,这是交叉子例程的关键组成部分。确实,我们研究了两个范式实例,即量子观测值的仿生克隆和bu \ v Zek-Hillery通用量子克隆机,观察到前者的平均平均收敛速度更快,但后者的最终人群更好。此外,我们分析了引入突变子例程的效果,从而得出了对平均性能的微小影响。此外,我们引入了量子通道分析,以证明我们的算法的指数收敛性,甚至可以预测其收敛比率。可以扩展该工具以正式证明基于一般非自然迭代算法的收敛性。
Genetic algorithms are heuristic optimization techniques inspired by Darwinian evolution, which are characterized by successfully finding robust solutions for optimization problems. Here, we propose a subroutine-based quantum genetic algorithm with individuals codified in independent registers. This distinctive codification allows our proposal to depict all the fundamental elements characterizing genetic algorithms, i.e. population-based search with selection of many individuals, crossover, and mutation. Our subroutine-based construction permits us to consider several variants of the algorithm. For instance, we firstly analyze the performance of two different quantum cloning machines, a key component of the crossover subroutine. Indeed, we study two paradigmatic examples, namely, the biomimetic cloning of quantum observables and the Bu\v zek-Hillery universal quantum cloning machine, observing a faster average convergence of the former, but better final populations of the latter. Additionally, we analyzed the effect of introducing a mutation subroutine, concluding a minor impact on the average performance. Furthermore, we introduce a quantum channel analysis to prove the exponential convergence of our algorithm and even predict its convergence-ratio. This tool could be extended to formally prove results on the convergence of general non-unitary iteration-based algorithms.