论文标题

用于匹配平台与多通道流量的在线算法

Online Algorithms for Matching Platforms with Multi-Channel Traffic

论文作者

Manshadi, Vahideh, Rodilitz, Scott, Saban, Daniela, Suresh, Akshaya

论文摘要

双面平台依靠他们的建议算法来帮助访问者成功找到比赛。但是,在诸如志愿者(VM)之类的平台上,该平台促进了志愿者和非营利组织之间数以百万计的联系 - 很大一部分网站流量直接通过外部链接直接到达了非营利组织的志愿者页面,因此绕过了平台的建议算法。我们研究了这些平台在设计算法的设计中如何考虑这种外部流量,鉴于成功匹配的目标。我们将平台的问题建模为在线匹配的一种特殊情况,其中(使用VM术语)志愿者依次和概率地与一个机会匹配,每个机会对志愿者都有有限的需求。在我们的框架中,外部流量仅对他们的目标机会感兴趣。相比之下,内部流量可能对许多机会感兴趣,并且该平台的在线算法选择了推荐的机会。在评估不同的算法时,我们根据外部流量的量对竞争比率进行参数化。在证明了在没有外部流量的情况下最佳的常用算法的缺点之后,我们提出了一种新的算法 - 自适应能力(AC) - 根据它们是内部还是外部流量,该算法的匹配程度有所不同。我们提供了AC的竞争比率的下限,该竞争比率正在增加外部流量的数量,并且接近(在某些制度中,完全匹配)我们以任何在线算法的竞争比率建立的参数化上限。我们通过由VM数据进行的数值研究补充了我们的理论结果,该研究证明了AC的强劲表现,并进一步了解了我们对AC和其他常用算法之间差异的理解。

Two-sided platforms rely on their recommendation algorithms to help visitors successfully find a match. However, on platforms such as VolunteerMatch (VM) -- which has facilitated millions of connections between volunteers and nonprofits -- a sizable fraction of website traffic arrives directly to a nonprofit's volunteering page via an external link, thus bypassing the platform's recommendation algorithm. We study how such platforms should account for this external traffic in the design of their recommendation algorithms, given the goal of maximizing successful matches. We model the platform's problem as a special case of online matching, where (using VM terminology) volunteers arrive sequentially and probabilistically match with one opportunity, each of which has finite need for volunteers. In our framework, external traffic is interested only in their targeted opportunity; by contrast, internal traffic may be interested in many opportunities, and the platform's online algorithm selects which opportunity to recommend. In evaluating different algorithms, we parameterize the competitive ratio based on the amount of external traffic. After demonstrating the shortcomings of a commonly-used algorithm that is optimal in the absence of external traffic, we propose a new algorithm -- Adaptive Capacity (AC) -- which accounts for matches differently based on whether they originate from internal or external traffic. We provide a lower bound on AC's competitive ratio that is increasing in the amount of external traffic and that is close to (and, in some regimes, exactly matches) the parameterized upper bound we establish on the competitive ratio of any online algorithm. We complement our theoretical results with a numerical study motivated by VM data that demonstrates the strong performance of AC and furthers our understanding of the difference between AC and other commonly-used algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源