论文标题
非遗传渗透和lee-yang edge singularity trom nonextentimenty $ λϕ^{3} $标量场理论
Nonextensive percolation and Lee-Yang edge singularity from nonextensive $λϕ^{3}$ scalar field theory
论文作者
论文摘要
我们计算无Xtentive $ λϕ^{3} $标量字段理论的关键指数和$ | q -1 | <1 $。我们将结果应用于非遗传性渗透和Lee-Yang Edge的奇异性问题。相应的系统是其广泛的对应物的无XTAMESTICENT概括。为此,我们采用了最近引入的无遗传统计领域理论中的工具。计算出的无XTAIMICY关键指数的结果取决于非Xtentive参数$ Q $,该参数$ Q $编码了系统自由度之间的全局相关性。在限制$ q \ rightarrow 1 $中回收了广泛的结果。一旦无Xtentendentive的关键指数依赖$ q $,全球相关性和波动之间存在相互作用。这种依赖性与普遍性假设一致。
We compute the critical exponents for nonextensive $λϕ^{3}$ scalar field theory for all loop orders and $|q - 1| < 1$. We apply the results for both nonextensive percolation and Lee-Yang edge singularity problems. The corresponding systems are nonextensive generalizations of their extensive counterparts. For that we employ tools from the recently introduced nonextensive statistical field theory. The results for the nonextensive critical exponents computed depend on the nonextensive parameter $q$, which encodes global correlations among the degrees of freedom of the system. The extensive results are recovered in the limit $q\rightarrow 1$. There is an interplay between global correlations and fluctuations, once the nonextensive critical exponents depend on $q$. This dependence is in agreement with the universality hypothesis.