论文标题
来自全息图的Rényi熵的形状变形
Shape Deformations of Charged Rényi Entropies from Holography
论文作者
论文摘要
带电和对称性分辨的Rényi熵是纠缠措施,量化了具有保守的全球电荷的理论不同电荷部门内的纠缠程度。我们使用全息图来确定带电的Rényi熵对从球形或平面纠缠表面的一般维度的小形状变形的依赖性。这种依赖性完全以与Rényi缺陷相关的位移操作员的两个点函数出现的单个系数出现。我们使用其与在存在变形的纠缠表面的情况下与应力张量的一个点函数的关系提取该系数。这将映射到具有双曲线层的变形带电的黑洞的背景下的全息计算。我们在各个时空维度中获得了不同值和复制数$ n $的不同值的数值解决方案,以及对于$ n = 1 $的小化学电位的分析表达式。当rényi缺陷变得超对称时,我们证明了位移操作员的两个点函数与扭曲操作员的保形重量之间的猜想关系。
Charged and symmetry-resolved Rényi entropies are entanglement measures quantifying the degree of entanglement within different charge sectors of a theory with a conserved global charge. We use holography to determine the dependence of charged Rényi entropies on small shape deformations away from a spherical or planar entangling surface in general dimensions. This dependence is completely characterized by a single coefficient appearing in the two point function of the displacement operator associated with the Rényi defect. We extract this coefficient using its relation to the one point function of the stress tensor in the presence of a deformed entangling surface. This is mapped to a holographic calculation in the background of a deformed charged black hole with hyperbolic horizon. We obtain numerical solutions for different values of the chemical potential and replica number $n$ in various spacetime dimensions, as well as analytic expressions for small chemical potential near $n=1$. When the Rényi defect becomes supersymmetric, we demonstrate a conjectured relation between the two point function of the displacement operator and the conformal weight of the twist operator.