论文标题

Damnets:一种用于生成Markovian网络时间序列的深度自回旋模型

DAMNETS: A Deep Autoregressive Model for Generating Markovian Network Time Series

论文作者

Clarkson, Jase, Cucuringu, Mihai, Elliott, Andrew, Reinert, Gesine

论文摘要

网络时间序列的生成模型(也称为动态图)在流行病学,生物学和经济学等领域具有巨大的潜力,在这种领域中,基于图的复杂动力学是研究的核心对象。由于数据的高维度以及代表时间依赖性和边际网络结构的需求,设计灵活且可扩展的生成模型是一项非常具有挑战性的任务。在这里,我们介绍了DAMNets,这是网络时间序列的可扩展的深层生成模型。在真实和合成数据集上,该死的人在我们所有样本质量的措施上的表现都优于竞争方法。

Generative models for network time series (also known as dynamic graphs) have tremendous potential in fields such as epidemiology, biology and economics, where complex graph-based dynamics are core objects of study. Designing flexible and scalable generative models is a very challenging task due to the high dimensionality of the data, as well as the need to represent temporal dependencies and marginal network structure. Here we introduce DAMNETS, a scalable deep generative model for network time series. DAMNETS outperforms competing methods on all of our measures of sample quality, over both real and synthetic data sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源