论文标题
涵盖复杂性,标量曲率和定量$ K $ - 理论
Covering complexity, scalar curvature, and quantitative $K$-theory
论文作者
论文摘要
我们建立了覆盖Riemannian自旋歧管的复杂性的某种概念与标量曲率上的正限制之间的关系。这利用了定量运算符$ k $ - 理论和Lipschitz拓扑$ k $ - 理论之间的配对,再加上较早的量化定理,用于定量较高的索引。
We establish a relationship between a certain notion of covering complexity of a Riemannian spin manifold and positive lower bounds on its scalar curvature. This makes use of a pairing between quantitative operator $K$-theory and Lipschitz topological $K$-theory, combined with an earlier vanishing theorem for the quantitative higher index.