论文标题

临时级联模型,用于通过疾病监测应用在不断发展的网络中分析传播

Temporal Cascade Model for Analyzing Spread in Evolving Networks with Disease Monitoring Applications

论文作者

Haldar, Aparajita, Wang, Shuang, Demirci, Gunduz, Oakley, Joe, Ferhatosmanoglu, Hakan

论文摘要

当前在网络中建模传播的方法(例如疾病的传播)无法充分捕获数据的时间特性,例如沿这些连接的阶段和不断发展的连接的持续时间或传播的动态可能性。在不断发展的网络中的时间模型在许多需要分析动态传播的应用中至关重要。例如,基于随着时间的流逝,以不同的频率,接近性和场地人口密度发生的个体之间的相互作用,分类疾病的病毒具有不同的传播性。为了捕获这种行为,我们首先开发了时间独立级联(T-IC)模型,并提出了一种新型的传播功能,我们证明是基于超图的采样策略,可有效利用动态传播概率。然后,我们使用所提出的T-IC过程介绍了“反向扩散”的概念,并开发解决方案以识别前哨/检测器节点和高度易感的节点。近似质量的可靠保证可以对高度颗粒状的时间网络进行可扩展分析。对各种现实世界数据集的广泛实验结果表明,通过考虑不断发展的网络拓扑以及颗粒状的接触/交互信息,提出的方法显着优于建模IF和如何发生的替代方案。我们的方法有许多应用,包括其对监测疾病扩散的重要挑战的实用性。利用所提出的方法和T-IC,我们分析了各种干预策略对实际时空接触网络的影响。我们的方法也证明在量化超级宣传者的重要性,设计有针对性的限制以控制传播和向后接触跟踪方面非常有效。

Current approaches for modeling propagation in networks (e.g., spread of disease) are unable to adequately capture temporal properties of the data such as order and duration of evolving connections or dynamic likelihoods of propagation along these connections. Temporal models in evolving networks are crucial in many applications that need to analyze dynamic spread. For example, a disease-spreading virus has varying transmissibility based on interactions between individuals occurring over time with different frequency, proximity, and venue population density. To capture such behaviors, we first develop the Temporal Independent Cascade (T-IC) model and propose a novel spread function, that we prove to be submodular, with a hypergraph-based sampling strategy that efficiently utilizes dynamic propagation probabilities. We then introduce the notion of 'reverse spread' using the proposed T-IC processes, and develop solutions to identify both sentinel/detector nodes and highly susceptible nodes. The proven guarantees of approximation quality enable scalable analysis of highly granular temporal networks. Extensive experimental results on a variety of real-world datasets show that the proposed approach significantly outperforms the alternatives in modeling both if and how spread occurs, by considering evolving network topology as well as granular contact/interaction information. Our approach has numerous applications, including its utility for the vital challenge of monitoring disease spread. Utilizing the proposed methods and T-IC, we analyze the impact of various intervention strategies over real spatio-temporal contact networks. Our approach is shown also to be highly effective in quantifying the importance of superspreaders, designing targeted restrictions for controlling spread, and backward contact tracing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源