论文标题
Hime:具有多个示例的有效爆头图像超分辨率
HIME: Efficient Headshot Image Super-Resolution with Multiple Exemplars
论文作者
论文摘要
在低分辨率头像图像中恢复丢失信息的一个有希望的方向是利用来自相同身份的一组高分辨率示例。参考集中的互补图像可以改善许多不同视图和姿势中生成的头像质量。但是,充分利用多个示例是一个挑战:无法保证每个示例的质量和对齐。使用低质量和不匹配的图像作为参考,将损害输出结果。为了克服这些问题,我们提出了具有多个示例网络(HIME)方法的有效的爆头图像超分辨率。与以前的方法相比,我们的网络可以有效地处理输入和参考之间的未对准,而无需面部先验,并以端到端的方式学习汇总的参考集表示。此外,为了重建更详细的面部特征,我们提出了相关性损失,可在可控的空间范围内提供丰富的局部纹理表示。实验结果表明,所提出的框架不仅比最近的示例指导方法的计算成本明显少得多,而且还可以实现更好的定性和定量性能。
A promising direction for recovering the lost information in low-resolution headshot images is utilizing a set of high-resolution exemplars from the same identity. Complementary images in the reference set can improve the generated headshot quality across many different views and poses. However, it is challenging to make the best use of multiple exemplars: the quality and alignment of each exemplar cannot be guaranteed. Using low-quality and mismatched images as references will impair the output results. To overcome these issues, we propose an efficient Headshot Image Super-Resolution with Multiple Exemplars network (HIME) method. Compared with previous methods, our network can effectively handle the misalignment between the input and the reference without requiring facial priors and learn the aggregated reference set representation in an end-to-end manner. Furthermore, to reconstruct more detailed facial features, we propose a correlation loss that provides a rich representation of the local texture in a controllable spatial range. Experimental results demonstrate that the proposed framework not only has significantly fewer computation cost than recent exemplar-guided methods but also achieves better qualitative and quantitative performance.