论文标题
二维旅行周期性重力毛细血管水波的横向动力学
Transverse dynamics of two-dimensional traveling periodic gravity-capillary water waves
论文作者
论文摘要
我们研究重力的二维旅行周期性波的横向动力学 - 毛细管水波问题。管理方程是在重力和表面张力的力下自由表面的无粘性流体层无关流动的欧拉方程。我们专注于两组无量纲参数$(α,β)$,其中$α$和$β$分别是Froude数字和Weber Number的反平方。对于每个任意但固定的对(α,β)$的每个组合之一,二维行进周期性波从微不足道的常数流分叉。在一个开放式场合中,我们发现了一个单参数周期性波,而在另一个开放式中,我们发现了两个几何不同的一参数的周期性波。从管理方程的横向空间动力学公式开始,我们研究了这些周期性波的横向线性不稳定性和诱导的尺寸破坏分叉。这两个结果对周期波的线性化纯粹虚构谱进行了共同的分析。我们将简单的通用标准用于横向线性不稳定性问题和lyapunov中心定理,以破坏尺寸的分叉。对于只有一个周期性波的开放集中的参数$(α,β)$,我们证明这些波是线性横向不稳定的。对于另一个开放式集合,我们证明具有较大波数的波是横向线性不稳定的。我们还确定了一个开放的参数子集,该参数的两个周期波均呈线性不稳定。对于这些横向线性不稳定的周期波中的每一个,都会发生破尺寸的分叉,其中三维双周期波从二维周期性波动中分叉。
We study the transverse dynamics of two-dimensional traveling periodic waves for the gravity--capillary water-wave problem. The governing equations are the Euler equations for the irrotational flow of an inviscid fluid layer with free surface under the forces of gravity and surface tension. We focus on two open sets of dimensionless parameters $(α,β)$, where $α$ and $β$ are the inverse square of the Froude number and the Weber number, respectively. For each arbitrary but fixed pair $(α,β)$ in one of these sets, two-dimensional traveling periodic waves bifurcate from the trivial constant flow. In one open set we find a one-parameter family of periodic waves, whereas in the other open set we find two geometrically distinct one-parameter families of periodic waves. Starting from a transverse spatial dynamics formulation of the governing equations, we investigate the transverse linear instability of these periodic waves and the induced dimension-breaking bifurcation. The two results share a common analysis of the purely imaginary spectrum of the linearization at a periodic wave. We apply a simple general criterion for the transverse linear instability problem and a Lyapunov center theorem for the dimension-breaking bifurcation. For parameters $(α,β)$ in the open set where there is only one family of periodic waves, we prove that these waves are linearly transversely unstable. For the other open set, we show that the waves with larger wavenumber are transversely linearly unstable. We also identify an open subset of parameters for which both families of periodic waves are tranversely linearly unstable. For each of these transversely linearly unstable periodic waves, a dimension-breaking bifurcation occurs in which three-dimensional doubly periodic waves bifurcate from the two-dimensional periodic wave.