论文标题

不用担心的素描:基于噪声的素描图像检索

Sketching without Worrying: Noise-Tolerant Sketch-Based Image Retrieval

论文作者

Bhunia, Ayan Kumar, Koley, Subhadeep, Khilji, Abdullah Faiz Ur Rahman, Sain, Aneeshan, Chowdhury, Pinaki Nath, Xiang, Tao, Song, Yi-Zhe

论文摘要

素描启用了许多令人兴奋的应用程序,尤其是图像检索。但是,恐惧的问题(即“我不能素描”)已被证明是致命的。本文解决了这一“恐惧”的问题,并且第一次提出了一个用于现有检索模型的辅助模块,该模块主要使用户素描而无需担心。我们首先进行了一项试点研究,该研究揭示了秘密的存在在于嘈杂的中风的存在,但“我不能素描”不多。因此,我们设计了一个中风子集选择器,该选择器{检测嘈杂的中风,仅留下这些},从而为成功的检索做出了积极的贡献。我们的基于增强学习的基于的公式根据中风有助于检索的程度量化了给定子集中每个中风的重要性。当将预训练的检索模型作为预处理模块结合使用时,我们比标准基准的显着增益为8%-10%,进而报告了新的最先进的性能。最后但并非最不重要的一点是,我们演示了一旦训练的选择器,也可以以插件的方式使用,以以前无法实现的方式增强各种草图应用程序。

Sketching enables many exciting applications, notably, image retrieval. The fear-to-sketch problem (i.e., "I can't sketch") has however proven to be fatal for its widespread adoption. This paper tackles this "fear" head on, and for the first time, proposes an auxiliary module for existing retrieval models that predominantly lets the users sketch without having to worry. We first conducted a pilot study that revealed the secret lies in the existence of noisy strokes, but not so much of the "I can't sketch". We consequently design a stroke subset selector that {detects noisy strokes, leaving only those} which make a positive contribution towards successful retrieval. Our Reinforcement Learning based formulation quantifies the importance of each stroke present in a given subset, based on the extent to which that stroke contributes to retrieval. When combined with pre-trained retrieval models as a pre-processing module, we achieve a significant gain of 8%-10% over standard baselines and in turn report new state-of-the-art performance. Last but not least, we demonstrate the selector once trained, can also be used in a plug-and-play manner to empower various sketch applications in ways that were not previously possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源