论文标题
乌尔里希(Ulrich)捆绑在一般打击中 - 飞机
Ulrich bundles on a general blow--up of the plane
论文作者
论文摘要
我们证明,在$ x_n $上,这架飞机爆炸了 - 以$ n $的积分为$ n $,对于与$ n $ blown的曲线相对应的线条捆绑包,有Ulrich Line Bundles,其中有$ n $ blown-up-up-up-up-m \ leq 2 \ leq 2 \ sqrt {n} $以及该线路套件中的$ x____ $ x___n。我们证明,这些Ulrich Line Bundles的数量往往是无限的$ n $。 我们还证明存在坡度 - 稳定等级的存在 - $ r $ ulrich vector捆绑$ x_n $,以$ n \ geq 2 $和任何$ r \ geq 1 $,我们计算其模量空间的尺寸。这些计算意味着$ x_n $是{Ulrich Wild}。
We prove that on $X_n$, the plane blown--up at $n$ general points, there are Ulrich line bundles with respect to a line bundle corresponding to curves of degree $m$ passing simply through the $n$ blown--up points, with $m\leq 2\sqrt{n}$ and such that the line bundle in question is very ample on $X_n$. We prove that the number of these Ulrich line bundles tends to infinity with $n$. We also prove the existence of slope--stable rank--$r$ Ulrich vector bundles on $X_n$, for $n\geq 2$ and any $r \geq 1$ and we compute the dimensions of their moduli spaces. These computations imply that $X_n$ is {Ulrich wild}.