论文标题

知识指导的学习用于收发器设计的学习

Knowledge-Guided Learning for Transceiver Design in Over-the-Air Federated Learning

论文作者

Zou, Yinan, Wang, Zixin, Chen, Xu, Zhou, Haibo, Zhou, Yong

论文摘要

在本文中,我们考虑了沟通效率高的无线联合学习(FL),其中多个具有非独立且分布的数据集在每个通信回合中执行多个局部迭代的设备,然后同时将其更新的梯度传输到Edge服务器上,通过使用电流计算(AIRMOMP)在同一无线电通道上通过同一无线电通道进行全局模型聚集。我们得出了梯度的时间平均值的上限,以表征AIRCOMP辅助FL的收敛性,该梯度揭示了模型聚集误差在所有通信回合中积累的模型聚集误差的影响。基于收敛分析,我们制定了一个优化问题,以最大程度地减少上限以增强学习性能,然后提出交替的优化算法,以促进AIRCOMP辅助FL的最佳收发器设计。随着交替优化算法遭受了较高的计算复杂性,我们进一步开发了一种知识引导的学习算法,该算法利用了最佳传输功率的分析表达的结构,以实现计算有效的收发器设计。仿真结果表明,所提出的知识指导学习算法的性能可与交替优化算法相当,但计算复杂性较低。此外,两者都提出的算法在收敛速度和测试准确性方面优于基线方法。

In this paper, we consider communication-efficient over-the-air federated learning (FL), where multiple edge devices with non-independent and identically distributed datasets perform multiple local iterations in each communication round and then concurrently transmit their updated gradients to an edge server over the same radio channel for global model aggregation using over-the-air computation (AirComp). We derive the upper bound of the time-average norm of the gradients to characterize the convergence of AirComp-assisted FL, which reveals the impact of the model aggregation errors accumulated over all communication rounds on convergence. Based on the convergence analysis, we formulate an optimization problem to minimize the upper bound to enhance the learning performance, followed by proposing an alternating optimization algorithm to facilitate the optimal transceiver design for AirComp-assisted FL. As the alternating optimization algorithm suffers from high computation complexity, we further develop a knowledge-guided learning algorithm that exploits the structure of the analytic expression of the optimal transmit power to achieve computation-efficient transceiver design. Simulation results demonstrate that the proposed knowledge-guided learning algorithm achieves a comparable performance as the alternating optimization algorithm, but with a much lower computation complexity. Moreover, both proposed algorithms outperform the baseline methods in terms of convergence speed and test accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源