论文标题

修改的AKNS模型,riccati-type伪电势方法和准保存法律的无限塔

Modified AKNS model, Riccati-type pseudo-potential approach and infinite towers of quasi-conservation laws

论文作者

Blas, H., Maguiña, M. Cerna, Santos, L. F. dos

论文摘要

引入了针对修改后的AKNS系统(MAKNS)引入双重RICCATI-Type伪电势配方,并发现了新型异常保护定律的无限塔。此外,在系统的线性公式中发现了确切的非本地保护定律的无限塔。结果表明,可以通过从MAKNS模型开始的还原过程获得非线性Schrödinger模型(MNL)的某些修改。因此,针对标准NLS和修改的MNLS病例,基于统一和严格的方法,基于统一和严格的方法,基于统一和严格的方法构建了新型的无限保护定律和相关的异常电荷。非本地特性,无限数量的异常电荷塔的完整列表以及(非本地)准确系统的(非本地)精确保护定律,例如在本文中介绍的框架中,可以研究在本文中列出的框架中的Bullough-dodd,Toda,KDV和Susy Sine-Gordon系统的变形。我们的结果可能会发现许多应用,因为AKNS型系统出现在非线性物理学的多个分支,例如Bose-Einstein凝结,超导性和独能性湍流。

A dual Riccati-type pseudo-potential formulation is introduced for a modified AKNS system (MAKNS) and infinite towers of novel anomalous conservation laws are uncovered. In addition, infinite towers of exact non-local conservation laws are uncovered in a linear formulation of the system. It is shown that certain modifications of the non-linear Schrödinger model (MNLS) can be obtained through a reduction process starting from the MAKNS model. So, the novel infinite sets of quasi-conservation laws and related anomalous charges are constructed by an unified and rigorous approach based on the Riccati-type pseudo-potential method, for the standard NLS and modified MNLS cases, respectively. The non-local properties, the complete list of towers of infinite number of anomalous charges and the (non-local) exact conservation laws of the quasi-integrable systems, such as the deformed Bullough-Dodd, Toda, KdV and SUSY sine-Gordon systems can be studied in the framework presented in this paper. Our results may find many applications since the AKNS-type system arises in several branches of non-linear physics, such as Bose-Einstein condensation, superconductivity and soliton turbulence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源