论文标题

通过一种新颖的分解启发式,解决众包共享的旅行交付问题

Tackling the Crowdsourced Shared-Trip Delivery Problem at Scale with a Novel Decomposition Heuristic

论文作者

Yang, Dingtong, Hyland, Michael F., Jayakrishnan, R.

论文摘要

本文提出了一种固定的分区配方和一种新颖的分解启发式(D-H)溶液算法,以解决城市众包共享交付(CSD)问题的大规模实例。 CSD问题涉及专用车辆(DVS)和共享个人车辆(SPV)履行送货订单,其中SPV具有自己的旅行起源和目的地。 D-H首先将尽可能多的软件包输送订单(PDO)分配给SPV,D-H列举了每个SPV的一组路由,然后解决PDO-SPV-Route分配问题。对于PDO-DV分配和DV路由,D-H使用插入启发式方法解决了多车程路由问题,旅行期限和容量限制。最后,D-H通过通过模拟退火(SA)启发的过程在SPV和DV路由之间切换PDO来寻求潜在的解决方案改进。 D-H在计算效率方面胜过商业求解器,同时为小问题实例获得了近乎最佳的解决方案。 SA启发的切换过程的表现优于一个关于运行时间的大型邻域搜索算法,而两个方面的交换过程在解决方案质量方面是可比的。最后,本文使用D-H分析了几个相关因素对城市规模的CSD系统性能的影响,即参与SPV的数量和最大的依赖SPV的意愿。与现有文献一致,我们发现CSD可以大大降低交货成本。但是,我们发现CSD可以增加行驶的车辆里程。我们的发现为物流从业者提供了有意义的见解,而算法则说明了对大型现实世界系统的希望。

This paper presents a set-partitioning formulation and a novel decomposition heuristic (D-H) solution algorithm to solve large-scale instances of the urban crowdsourced shared-trip delivery (CSD) problem. The CSD problem involves dedicated vehicles (DVs) and shared personal vehicles (SPVs) fulfilling delivery orders, wherein the SPVs have their own trip origins and destinations. The D-H begins by assigning as many package delivery orders (PDOs) to SPVs as possible, where the D-H enumerates the set of routes each SPV can feasibly traverse and then solves a PDO-SPV-route assignment problem. For PDO-DV assignment and DV routing, the D-H solves a multi-vehicle routing problem with time-window, tour duration, and capacity constraints using an insertion heuristic. Finally, the D-H seeks potential solution improvements by switching PDOs between SPV and DV routes through a simulated annealing (SA)-inspired procedure. The D-H outperforms a commercial solver in terms of computational efficiency while obtaining near-optimal solutions for small problem instances. The SA-inspired switching procedure outperforms a large neighborhood search algorithm regarding run time, and the two are comparable regarding solution quality. Finally, the paper uses the D-H to analyze the impact of several relevant factors on city-scale CSD system performance, namely the number of participating SPVs and the maximum willingness to detour of SPVs. Consistent with the existing literature, we find that CSD can substantially reduce delivery costs. However, we find that CSD can increase vehicle miles traveled. Our findings provide meaningful insights for logistics practitioners, while the algorithms illustrate promise for large real-world systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源