论文标题

机械可调的辐射冷却用于自适应热控制

Mechanically Tunable Radiative Cooling for Adaptive Thermal Control

论文作者

Butler, Andrew, Argyropoulos, Christos

论文摘要

被动辐射冷却目前是可再生能源研究中的前沿技术。就外星应用而言,辐射冷却是航天器的热管理系统的关键组成部分,在该系统中,空间的极端环境可能会导致较大的温度变化,可以破坏和损坏设备。对于陆地应用,夜间或白天的辐射冷却预计将导致具有成本效益的被动热管理,而无需效率低下且昂贵的人工制冷技术。但是,当前大多数可用的辐射冷却系统无法动态更改并辐射恒定的静态热力。动态可调的自适应辐射冷却系统将是延长航天器寿命或提高陆地冷却系统效率的关键发展。在这里,我们提出了可拉伸的辐射冷却设计,可以通过使用简单的机械应变物理机理来实质性地调整。当它们的结构拉伸时,辐射功率会大大降低。我们开发了一种建模方法,该方法可以模拟机械拉伸与电磁响应结合,以计算这些新的自适应辐射冷却系统的可调热发射。提出的光子工程结构可以用作涂料,以具有成本效益且环保的方式实现各种物体的有效自适应热控制。所提出的设计比文献中的其他设计要简单得多,而最佳设计则具有高热发射功率,并且在132 W/m2的订单上具有可​​调范围。

Passive radiative cooling is currently the frontier technology in renewable-energy research. In terms of extraterrestrial applications, radiative cooling is a critical component to the thermal management system of a spacecraft, where the extreme environment of space can cause large temperature variations that can break and damage equipment. For terrestrial applications, nocturnal or daytime radiative cooling is expected to lead to cost-effective passive heat management without the need of inefficient and costly artificial refrigeration technologies. However, most currently available radiative cooling systems cannot be changed dynamically and radiate a constant static amount of thermal power. Dynamically tunable adaptive radiative cooling systems will be a critical development to prolong the lifetime of spacecraft or improve the efficiency of terrestrial cooling systems. Here we propose stretchable radiative cooling designs that can be substantially tuned by using the simple physical mechanism of mechanical strain. When their structure is stretched, the radiated power is significantly reduced. We develop a modeling method that can simulate mechanical stretching combined with electromagnetic response to compute the tunable thermal emission of these new adaptive radiative cooling systems. The presented photonically engineered structures can be used as coatings to achieve efficient adaptive thermal control of various objects in a cost-effective and environmentally friendly way. The proposed designs are much simpler to be realized than others found in the literature and the best design achieves a high thermal emission power with a tunable range on the order of 132 W/m2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源