论文标题

AMCAD:基于自适应的混合曲面代表性广告检索系统

AMCAD: Adaptive Mixed-Curvature Representation based Advertisement Retrieval System

论文作者

Xu, Zhirong, Wen, Shiyang, Wang, Junshan, Liu, Guojun, Wang, Liang, Yang, Zhi, Ding, Lei, Zhang, Yan, Zhang, Di, Xu, Jian, Zheng, Bo

论文摘要

基于图的基于图的检索已成为信息检索社区和搜索引擎行业中最受欢迎的技术之一。经典范式主要依赖于平坦的欧几里得几何形状。近年来,双曲线(负曲率)和球形(正曲率)表示方法分别表明了它们的优势,分别捕获了分层和循环数据结构。但是,在诸如电子商务赞助搜索平台之类的工业场景中,大规模的异质查询 - 项目互动图通常具有多个共存的结构。现有方法要么仅考虑一个几何空间,要么手动组合几个空间,这些空间无能力和僵化,无法在实际情况下建模复杂性和异质性。为了应对这一挑战,我们提出了网络规模的自适应混合曲面广告检索系统(AMCAD),以自动捕获非欧盟境空间中的复杂且异构的图形结构。具体而言,实体在自适应混合曲面空间中表示,其中训练子空间的类型和曲率是最佳组合。此外,专门的边缘空间投影仪旨在根据本地图结构和关系类型对异质节点之间的相似性进行建模。此外,要在TAOBAO部署AMCAD,这是最大的电子商务平台之一,拥有数百万用户,我们为基于图形的广告检索任务设计了有效的两层在线检索框架。对现实世界数据集和对在线流量的A/B测试进行了广泛的评估,以说明拟议系统的有效性。

Graph embedding based retrieval has become one of the most popular techniques in the information retrieval community and search engine industry. The classical paradigm mainly relies on the flat Euclidean geometry. In recent years, hyperbolic (negative curvature) and spherical (positive curvature) representation methods have shown their superiority to capture hierarchical and cyclic data structures respectively. However, in industrial scenarios such as e-commerce sponsored search platforms, the large-scale heterogeneous query-item-advertisement interaction graphs often have multiple structures coexisting. Existing methods either only consider a single geometry space, or combine several spaces manually, which are incapable and inflexible to model the complexity and heterogeneity in the real scenario. To tackle this challenge, we present a web-scale Adaptive Mixed-Curvature ADvertisement retrieval system (AMCAD) to automatically capture the complex and heterogeneous graph structures in non-Euclidean spaces. Specifically, entities are represented in adaptive mixed-curvature spaces, where the types and curvatures of the subspaces are trained to be optimal combinations. Besides, an attentive edge-wise space projector is designed to model the similarities between heterogeneous nodes according to local graph structures and the relation types. Moreover, to deploy AMCAD in Taobao, one of the largest ecommerce platforms with hundreds of million users, we design an efficient two-layer online retrieval framework for the task of graph based advertisement retrieval. Extensive evaluations on real-world datasets and A/B tests on online traffic are conducted to illustrate the effectiveness of the proposed system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源