论文标题
四个矢量光学狄拉克方程和结构光的自旋轨道相互作用
Four-Vector Optical Dirac Equation and Spin-Orbit Interaction of Structured Light
论文作者
论文摘要
光的自旋轨道相互作用是理解材料的电磁特性并意识到光场的自旋控制操纵的关键概念。实现这些目标需要在矢量波力学的背景下对旋转依赖性光学现象进行完整描述。我们在通用培养基中开发了一种用于光场的扩展狄拉克理论,该理论类似于大规模费米子的非弱者手性延伸,并且在外部伪磁场中移动异常的磁性动量。这种相似性使我们能够通过有效的现场理论方法研究材料的光学行为,并且可以在超材料,光子拓扑绝缘子等中找到广泛的应用。我们通过研究在自旋 - 脱位培养基中结构化光的自旋轨道相互作用来证明了这一方法,并导致旋转式旋转效应和旋转效应,从而呈现出两种旋转式效应。重要的是,我们的方法为通用介质中光的自旋轨道相互作用提供了简单明了的物理洞察力,并有可能弥合我们对电子系统和光子系统之间拓扑绝缘子的理解。
The spin-orbit interaction of light is a crucial concept for understanding the electromagnetic properties of a material and realizing the spin-controlled manipulation of optical fields. Achieving these goals requires a complete description of spin-dependent optical phenomena in the context of vector-wave mechanics. We develop an extended Dirac theory for optical fields in generic media, which was found to be akin to a non-Hermitian chiral-extension of massive fermions with anomalous magnetic momenta moving in an external pseudo-magnetic field. This similarity allows us to investigate the optical behaviors of a material by effective field theory methods and can find wide applications in metamaterials, photonic topological insulators, etc. We demonstrate this method by studying the spin-orbit interaction of structured light in a spin-degenerate medium and inhomogeneous isotropic medium, which leads to both spin-orbital-Hall effects and spin-to-orbital angular momentum conversion. Of importance, our approach provides simple and clear physical insight into the spin-orbit interaction of light in generic media, and could potentially bridge our understanding of topological insulators between electronic and photonic systems.