论文标题
一个混合学习和优化框架,可与移动操纵器实现物理互动任务
A Hybrid Learning and Optimization Framework to Achieve Physically Interactive Tasks with Mobile Manipulators
论文作者
论文摘要
本文提出了用于复杂和物理互动任务的移动操纵器的混合学习和优化框架。该框架利用了入学型物理接口,以获得直观而简化的人类演示和高斯混合模型(GMM)/高斯混合物回归(GMR),以根据位置,速度和力剖面来编码和生成学习的任务要求。接下来,使用GMM/GMR生成的所需轨迹和力剖面,通过用二次程序增强的能量箱增强笛卡尔阻抗控制器的阻抗参数可以在线优化,以确保受控系统的消极性。进行了两个实验以验证框架,将我们的方法与两种恒定刚度(高和低)的方法进行了比较。结果表明,该方法在轨迹跟踪和生成的相互作用力方面,即使存在诸如意外的最终效应碰撞之类的干扰,也比其他两种情况优于其他两个情况。
This paper proposes a hybrid learning and optimization framework for mobile manipulators for complex and physically interactive tasks. The framework exploits an admittance-type physical interface to obtain intuitive and simplified human demonstrations and Gaussian Mixture Model (GMM)/Gaussian Mixture Regression (GMR) to encode and generate the learned task requirements in terms of position, velocity, and force profiles. Next, using the desired trajectories and force profiles generated by GMM/GMR, the impedance parameters of a Cartesian impedance controller are optimized online through a Quadratic Program augmented with an energy tank to ensure the passivity of the controlled system. Two experiments are conducted to validate the framework, comparing our method with two approaches with constant stiffness (high and low). The results showed that the proposed method outperforms the other two cases in terms of trajectory tracking and generated interaction forces, even in the presence of disturbances such as unexpected end-effector collisions.