论文标题

使用非线性功能提高肌电模式识别性能

Myoelectric Pattern Recognition Performance Enhancement Using Nonlinear Features

论文作者

Islam, Md. Johirul, Ahmad, Shamim, Haque, Fahmida, Reaz, Mamun Bin Ibne, Bhuiyan, Mohammad A. S., Islam, Md. Rezaul

论文摘要

用于肌电图(EMG)模式识别的多通道电极阵列可提供良好的性能,但成本很高,计算量昂贵,并且穿着不便。因此,研究人员尝试使用尽可能少的渠道,同时保持改进的模式识别性能。但是,最小化通道的数量会影响具有信号强度较弱的运动中最小的余量,因此会影响性能。为了应对这些挑战,提出了两个基于非线性缩放的时间域特征,即平均绝对值(LMAV)和非线性缩放值(NSV)的日志。在这项研究中,我们验证了两个数据集上的提议特征,现有的四种特征提取方法,可变窗口大小以及各种信号与噪声比(SNR)。此外,我们还提出了一种特征提取方法,其中LMAV和NSV与现有的11个时间域特征分组。所提出的特征提取方法提高了数据集1的准确性,灵敏度,特异性,精度和F1分数的得分为1.00%,5.01%,0.55%,4.71%和5.06%,而数据集2分别为数据集2分别为1.18%,5.90%,0.66%,5.63%和6.04%。因此,实验结果强烈建议提出的特征提取方法,以提高肌电模式识别性能方面迈出了一步。

The multichannel electrode array used for electromyogram (EMG) pattern recognition provides good performance, but it has a high cost, is computationally expensive, and is inconvenient to wear. Therefore, researchers try to use as few channels as possible while maintaining improved pattern recognition performance. However, minimizing the number of channels affects the performance due to the least separable margin among the movements possessing weak signal strengths. To meet these challenges, two time-domain features based on nonlinear scaling, the log of the mean absolute value (LMAV) and the nonlinear scaled value (NSV), are proposed. In this study, we validate the proposed features on two datasets, existing four feature extraction methods, variable window size and various signal to noise ratios (SNR). In addition, we also propose a feature extraction method where the LMAV and NSV are grouped with the existing 11 time-domain features. The proposed feature extraction method enhances accuracy, sensitivity, specificity, precision, and F1 score by 1.00%, 5.01%, 0.55%, 4.71%, and 5.06% for dataset 1, and 1.18%, 5.90%, 0.66%, 5.63%, and 6.04% for dataset 2, respectively. Therefore, the experimental results strongly suggest the proposed feature extraction method, for taking a step forward with regard to improved myoelectric pattern recognition performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源