论文标题

在驱动的基塔维链中量子淬灭之后,放松对平价对称的广义吉布斯集合

Relaxation to a Parity-Time Symmetric Generalized Gibbs Ensemble after a Quantum Quench in a Driven-Dissipative Kitaev Chain

论文作者

Starchl, Elias, Sieberer, Lukas M.

论文摘要

广义吉布斯集团的构建基于最大熵的原理。相比之下,没有统治量子系统的放松动力和固定状态的普遍和模型无关的定律,这些量子系统受到马尔可夫驱动和耗散的影响。然而,正如我们所显示的那样,如果产生系统动力学的liouvillian具有平均时间对称性,则可以通过最大熵集合来确定量子淬火后驱动的驱动系统的放松。着眼于驱动的基塔夫链的特定示例,我们表明,与孤立的集成系统类似,平价对称对称性的广义吉布斯集合的方法显现在局部观测值和子系统熵的动力学的放松中。相比之下,基塔夫链的非平凡的非平地拓扑引起的费米亚奇偶校验的定向泵浦代表了一种现象,它是驱动 - 疾病系统中放松动力学独有的现象。在增加耗散强度后,平均时间对称性在有限的临界值下被打破,因此构成了急剧的动力过渡,从而划定了最大熵原理的适用性。我们表明,这些结果(我们为Kitaev链的特定示例获得)适用于广泛的非相互作用的费米子模型,我们讨论了它们对非相互作用的Bosonic模型和相互作用的自旋链的概括。

The construction of the generalized Gibbs ensemble, to which isolated integrable quantum many-body systems relax after a quantum quench, is based upon the principle of maximum entropy. In contrast, there are no universal and model-independent laws that govern the relaxation dynamics and stationary states of open quantum systems, which are subjected to Markovian drive and dissipation. Yet, as we show, relaxation of driven-dissipative systems after a quantum quench can, in fact, be determined by a maximum entropy ensemble, if the Liouvillian that generates the dynamics of the system has parity-time symmetry. Focusing on the specific example of a driven-dissipative Kitaev chain, we show that, similarly to isolated integrable systems, the approach to a parity-time symmetric generalized Gibbs ensemble becomes manifest in the relaxation of local observables and the dynamics of subsystem entropies. In contrast, the directional pumping of fermion parity, which is induced by nontrivial non-Hermitian topology of the Kitaev chain, represents a phenomenon that is unique to relaxation dynamics in driven-dissipative systems. Upon increasing the strength of dissipation, parity-time symmetry is broken at a finite critical value, which thus constitutes a sharp dynamical transition that delimits the applicability of the principle of maximum entropy. We show that these results, which we obtain for the specific example of the Kitaev chain, apply to broad classes of noninteracting fermionic models, and we discuss their generalization to a noninteracting bosonic model and an interacting spin chain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源