论文标题

富裕总和的两个几何解释

Two Geometric Interpretations of Hardy Sums

论文作者

Lägeler, Alessandro

论文摘要

如果晶格为$ \ mathbf {z}^2 $,则在三角形中找到晶格点的数量具有经典的解决方案,而三角形的顶点具有整数值坐标。我们考虑将晶格替换为$(2 \ mathbf {z})^2 $而替换晶格时会发生什么,并给出一个明确的公式,以用耐力的总和在三角形内的晶格点数。此外,我们将强力总和的第二个几何解释作为签名的相交数字,并具有一定的指向的地理学网。使用这种几何实现,我们通过基本参数证明了对Hardy总和的广义互惠定律。

The problem of finding the number of lattice points in a triangle has a classical solution if the lattice is $\mathbf{Z}^2$ and the vertices of the triangle have integer valued coordinates. We consider what happens when we replace the lattice by $(2 \mathbf{Z})^2$ instead and give an explicit formula for the number of lattice points inside a triangle in terms of Hardy sums. Moreover, we give a second geometric interpretation of the Hardy sums as signed intersection numbers with a certain oriented net of geodesics. Using this geometric realization, we prove a generalized reciprocity law for Hardy sums by an elementary argument.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源