论文标题

CenterLoc3D:路边监视摄像头的单眼3D车辆定位网络

CenterLoc3D: Monocular 3D Vehicle Localization Network for Roadside Surveillance Cameras

论文作者

Xinyao, Tang, Wei, Wang, Huansheng, Song, Chunhui, Zhao

论文摘要

单程3D车辆定位是智能运输系统(ITS)和合作车辆基础设施系统(CVIS)的重要任务,通常是通过单眼3D车辆检测来实现的。但是,由于固有的成像机制,无法通过单眼相机直接获得深度信息,从而导致更具挑战性的单眼3D任务。当前的大多数单眼3D车辆检测方法都利用2D检测器和其他几何模块,从而降低了效率。在本文中,我们为路边单眼相机提出了一个3D车辆定位网络中心LOC3D,该摄像头直接预测图像空间中的质心和八个顶点,以及没有2D检测器的3D边界框的尺寸。为了提高3D车辆定位的精度,我们提出了一个加权融合模块和嵌入了CenterLoc3d中的空间约束的损失。首先,2D图像空间和3D世界空间之间的转换矩阵是通过摄像机校准来解决的。其次,车辆类型,质心,八个顶点以及3D车辆边界盒的尺寸由CenterLoc3D获得。最后,可以通过相机校准和3D车辆定位的CenterLoc3D获得3D世界空间中的质心。据我们所知,这是第3D车辆定位在路边单眼摄像机中的首次应用。因此,我们还为该应用程序提出了一个基准测试,包括数据集(SVLD-3D),注释工具(Labelimg-3d)和评估指标。通过实验验证,提出的方法可实现高准确性和实时性能。 (有限的单词,请参阅文章以获取更多详细信息)

Monocular 3D vehicle localization is an important task in Intelligent Transportation System (ITS) and Cooperative Vehicle Infrastructure System (CVIS), which is usually achieved by monocular 3D vehicle detection. However, depth information cannot be obtained directly by monocular cameras due to the inherent imaging mechanism, resulting in more challenging monocular 3D tasks. Most of the current monocular 3D vehicle detection methods leverage 2D detectors and additional geometric modules, which reduces the efficiency. In this paper, we propose a 3D vehicle localization network CenterLoc3D for roadside monocular cameras, which directly predicts centroid and eight vertexes in image space, and the dimension of 3D bounding boxes without 2D detectors. To improve the precision of 3D vehicle localization, we propose a weighted-fusion module and a loss with spatial constraints embedded in CenterLoc3D. Firstly, the transformation matrix between 2D image space and 3D world space is solved by camera calibration. Secondly, vehicle type, centroid, eight vertexes, and the dimension of 3D vehicle bounding boxes are obtained by CenterLoc3D. Finally, centroid in 3D world space can be obtained by camera calibration and CenterLoc3D for 3D vehicle localization. To the best of our knowledge, this is the first application of 3D vehicle localization for roadside monocular cameras. Hence, we also propose a benchmark for this application including a dataset (SVLD-3D), an annotation tool (LabelImg-3D), and evaluation metrics. Through experimental validation, the proposed method achieves high accuracy and real-time performance. (limited words, please see the article for more details)

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源