论文标题
在两种类型的仿射结构上,用于退化Kummer表面-Non-Archimedean vs Gromov-Hausdorff限制 -
On The Two Types Of Affine Structures For Degenerating Kummer Surfaces -Non-Archimedean VS Gromov-Hausdorff Limits-
论文作者
论文摘要
Kontsevich和Soibelman用奇异性(简称Iams)构建了积分的仿射流形,以非架构的方式对极化的Calabi-yau歧管的最大变性。另一方面,对于偏光calabi-yau歧管的每个最大变性家族,我们可以考虑纤维的Gromov-Hausdorff极限。预计该Gromov-Hausdorff限制具有IAMS结构。 Kontsevich和Soibelman猜想这两种类型的IAM是相同的。这种猜想在镜像对称环境中被认为。在本文中,我们证明了上述猜想,用于极化Kummer表面的最大变性。
Kontsevich and Soibelman constructed integral affine manifolds with singularities (IAMS, for short) for maximal degenerations of polarized Calabi-Yau manifolds in a non-Archimedean way. On the other hand, for each maximally degenerating family of polarized Calabi-Yau manifolds, we can consider the Gromov-Hausdorff limit of the fibers. It is expected that this Gromov-Hausdorff limit carries an IAMS-structure. Kontsevich and Soibelman conjectured that these two types of IAMS are the same. This conjecture is believed in the mirror symmetry context. In this paper, we prove the above conjecture for maximal degenerations of polarized Kummer surfaces.