论文标题

课程学习,用于自我监督的说话者验证

Curriculum learning for self-supervised speaker verification

论文作者

Heo, Hee-Soo, Jung, Jee-weon, Kang, Jingu, Kwon, Youngki, Kim, You Jin, Lee, Bong-Jin, Chung, Joon Son

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The goal of this paper is to train effective self-supervised speaker representations without identity labels. We propose two curriculum learning strategies within a self-supervised learning framework. The first strategy aims to gradually increase the number of speakers in the training phase by enlarging the used portion of the train dataset. The second strategy applies various data augmentations to more utterances within a mini-batch as the training proceeds. A range of experiments conducted using the DINO self-supervised framework on the VoxCeleb1 evaluation protocol demonstrates the effectiveness of our proposed curriculum learning strategies. We report a competitive equal error rate of 4.47% with a single-phase training, and we also demonstrate that the performance further improves to 1.84% by fine-tuning on a small labelled dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源