论文标题
与常规节点元件相对于电磁分析的新型节点到边缘有限元的比较性能
Comparative Performance of Novel Nodal-to-Edge finite elements over Conventional Nodal element for Electromagnetic Analysis
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In nodal based finite element method (FEM), degrees of freedom are associated with the nodes of the element whereas, for edge FEM, degrees of freedom are assigned to the edges of the element. Edge element is constructed based on Whitney spaces. Nodal elements impose both tangential and normal continuity of vector or scalar fields across interface boundaries. But in edge elements only tangential continuity is imposed across interface boundaries, which is consistent with electromagnetic field problems. Therefore, the required continuities in the electromagnetic analysis are directly obtained with edge elements, whereas in nodal elements they are attained through potential formulations. Hence, while using edge elements, field variables are directly calculated, but with nodal elements, post-processing is required to obtain the field variables from the potentials. Here, we present the finite element formulations with the edge element as well as with nodal elements. Thereafter, we have demonstrated the relative performances of different nodal and edge elements through a series of examples. All possible complexities like curved boundaries, non-convex domains, sharp corners, non-homogeneous domains have been addressed in those examples. The robustness of edge elements in predicting the singular eigen values for the domains with sharp edges and corners is evident in the analysis. A better coarse mesh accuracy has been observed for all the edge elements as compared to the respective nodal elements. Edge elements are also not susceptible to mesh distortion.