论文标题

对象检测评估的最佳校正成本

Optimal Correction Cost for Object Detection Evaluation

论文作者

Otani, Mayu, Togashi, Riku, Nakashima, Yuta, Rahtu, Esa, Heikkilä, Janne, Satoh, Shin'ichi

论文摘要

平均平均精度(MAP)是对象检测的主要评估措施。尽管对象检测具有广泛的应用,但MAP根据排名实例检索的性能评估了检测器。这样的评估任务的假设不适合某些下游任务。为了减轻下游任务与评估方案之间的差距,我们提出了最佳校正成本(OC-COST),该成本评估了图像级别的检测准确性。 OC-COST计算将检测到地面真理的成本,以衡量准确性。成本是通过解决检测和地面真相之间的最佳运输问题来获得的。与地图不同,OC-COST旨在正确惩罚假阳性和假阴性检测,并且数据集中的每个图像均被同样处理。我们的实验结果证实了与基于排名的度量(即单个图像的映射)相比,OC与人类偏好具有更好的一致性。我们还表明,在不同的数据拆分上,检测器的排名比地图更一致。我们的目标不是用OC-COST代替地图,而是提供从另一个方面评估检测器的额外工具。为了帮助未来的研究人员和开发人员选择一个目标度量,我们提供了一系列实验,以阐明地图和OC成本的不同。

Mean Average Precision (mAP) is the primary evaluation measure for object detection. Although object detection has a broad range of applications, mAP evaluates detectors in terms of the performance of ranked instance retrieval. Such the assumption for the evaluation task does not suit some downstream tasks. To alleviate the gap between downstream tasks and the evaluation scenario, we propose Optimal Correction Cost (OC-cost), which assesses detection accuracy at image level. OC-cost computes the cost of correcting detections to ground truths as a measure of accuracy. The cost is obtained by solving an optimal transportation problem between the detections and the ground truths. Unlike mAP, OC-cost is designed to penalize false positive and false negative detections properly, and every image in a dataset is treated equally. Our experimental result validates that OC-cost has better agreement with human preference than a ranking-based measure, i.e., mAP for a single image. We also show that detectors' rankings by OC-cost are more consistent on different data splits than mAP. Our goal is not to replace mAP with OC-cost but provide an additional tool to evaluate detectors from another aspect. To help future researchers and developers choose a target measure, we provide a series of experiments to clarify how mAP and OC-cost differ.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源