论文标题
在量子算法中编码折衷和设计工具包,以进行离散优化:着色,路由,调度和其他问题
Encoding trade-offs and design toolkits in quantum algorithms for discrete optimization: coloring, routing, scheduling, and other problems
论文作者
论文摘要
具有挑战性的组合优化问题在科学和工程中无处不在。最近在包括精确和近似求解器的不同设置中开发了几种用于优化的量子方法。在这一研究领域,该手稿具有三个不同的目的。首先,我们提出了一种直观的方法,用于合成和分析离散(即基于整数的)优化问题,其中使用独立于独立于独立的依赖性的问题和相应的算法基原始人(使用离散的量子中间表示(DQIR)表示)。与以前的方法相比,这种紧凑的表示通常允许进行更有效的问题汇编,对不同编码选择的自动分析,更容易的解释性,更复杂的运行时过程和更丰富的可编程性,与以前的方法相比,我们用许多示例证明了这些方法。其次,我们进行了比较几个量子编码的数值研究。结果表现出许多初步趋势,可帮助指导针对特定硬件以及特定问题和算法的编码选择。我们的研究包括与图形着色,旅行销售人员问题,工厂/机器计划,财务组合重新平衡以及整数线性编程有关的问题。第三,我们设计了低最多的图形偏用混合器(GDPM),最多可达16级量子变量,证明紧凑型(二进制)编码比以前所理解的更适合QAOA。我们期望这个编程抽象和低级构件的工具包,以帮助设计量子算法,以解决离散的组合问题。
Challenging combinatorial optimization problems are ubiquitous in science and engineering. Several quantum methods for optimization have recently been developed, in different settings including both exact and approximate solvers. Addressing this field of research, this manuscript has three distinct purposes. First, we present an intuitive method for synthesizing and analyzing discrete (i.e., integer-based) optimization problems, wherein the problem and corresponding algorithmic primitives are expressed using a discrete quantum intermediate representation (DQIR) that is encoding-independent. This compact representation often allows for more efficient problem compilation, automated analyses of different encoding choices, easier interpretability, more complex runtime procedures, and richer programmability, as compared to previous approaches, which we demonstrate with a number of examples. Second, we perform numerical studies comparing several qubit encodings; the results exhibit a number of preliminary trends that help guide the choice of encoding for a particular set of hardware and a particular problem and algorithm. Our study includes problems related to graph coloring, the traveling salesperson problem, factory/machine scheduling, financial portfolio rebalancing, and integer linear programming. Third, we design low-depth graph-derived partial mixers (GDPMs) up to 16-level quantum variables, demonstrating that compact (binary) encodings are more amenable to QAOA than previously understood. We expect this toolkit of programming abstractions and low-level building blocks to aid in designing quantum algorithms for discrete combinatorial problems.